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Summary: In this paper sufficient conditions for both practical and finite time 

stability of linear singular continuous time delay systems were introduced. The singular and 

singular time delay systems can be mathematically described as Ex′(t) = Ax(t) and  Ex′(t) = 

A0x(t) – A1x(t - τ), respectively. Analyzing finite time stability, the new delay independent 

and delay dependent conditions were derived using the approaches based on Lyapunov-like 

functions and their properties on the subspace of consistent initial conditions. These 

functions do not need to be positive on the whole state space and to have negative 

derivatives along the system trajectories. When the practical stability was analyzed, the 

approach was combined with classical Lyapunov technique to guarantee the attractivity 

property of the system behavior. Furthermore, an LMI approach was applied to obtain less 

conservative stability conditions. The proposed methodology was applied and tested to a 

medical robotic system. The system was designed for different insertion tasks playing 

important roles in automatic drug delivery, biopsy or radioactive seeds delivery. In this 

paper we have summarized different techniques for adequate modeling, control and 

stability analysis of the medical robots. The model of the robotic system, with the tasks 

described above, the entire system can be decomposed to the robotic subsystem and the 

environment subsystem. Modeling of the system by the method mentioned has been proved 

to be suitable when the force appears as a result of the interaction of the two subsystems. 

The mathematical model of the system has a singular characteristic. The singular system 

theory could be applied to the case described. It is well known that all mechanical system 

possesses some delay. In that case a theory of singular systems with delayed states may be 

applied, as well. For the second phase in which there is no interaction, the dynamic 

behavior can be analyzed by the classic theory. 
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1.  INTRODUCTION 

 

It was noticed that the characteristics of the dynamic and static state should be considered at the same 

time for some systems. Singular systems (also referred to as degenerate, descriptor, generalized, differential-

algebraic or semi-state systems) are systems whose dynamic is governed by the complexity of algebraic and 

differential equations. Recently, many researchers have paid much attention to singular systems and they 

have accomplished numerous valuable conclusions. The complex nature of singular systems generates many 

difficulties in the analytical and numerical solution of such systems, particularly during the control tasks. 

Recently, the singular systems have been one of the major research fields of control theory. During the past 

three decades singular systems have attracted significant attention due to the comprehensive applications in 

economics, as the Leontief dynamic model, in electrical applications using the theory described in [1], in 

mechanical models as in [2], etc. Singular systems in control theory have been initially discussed in [3] and 

[4]. The investigation of time delay systems has been carried out over many years. Time delay is very often 

encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical 

processes, long transmission lines, etc.  



It has been observed that variety of singular systems is characterized by the phenomena of time delay. 

Such systems are called singular differential systems with time delay. These systems have many special 

characteristics. In order to mathematically describe those systems in more accurate manner, and to control 

them more effectively, this specific class of the singular systems was investigated in details. In this article, 

the new approach to the stability of the singular time delay systems was presented.  

 

 

2. SYSTEM MODELING 

 

In this section a procedure for the system modeling was described. A mathematical model of the 

presented medical robotic system was used for validation of the main results and stability investigation. The 

mathematical equations of the system were analyzed further and new delay independent and delay dependent 

conditions were implemented in practical stability analysis.  

 

2.1 System description 

 

The surgery module consists of 2 degree-of-freedom (DOF) ultrasound probe driver and 5DOF 

needling module (Figure 1). The ultrasound (US) module can be translated and rotate independently by two 

DC servomotors fitted with high-resolution optical encoders and gearboxes. In this study, we analyzed 5DOF 

needling module which consist of gantry and needle driver.  

 
 

Figure 1. Video-guided robotic system for insertion tasks. The proposed methodology was tested on this system. 

Surgery module: consists of 2DOF ultrasound probe driver and 5DOF needling module. Needling module consists of 

gantry and needle driver. Mathematical model of the system was singular system as in equations (3-4) 

 

Gantry connects the needle-driving module to the positioning platform. The gantry has two translation 

motions and one rotational motion (pitching). Needle driver subsystem is consists of a hollow needle 

(cannula) and solid needle (stylet) driven separately by two DC servomotors. The cannula rotates 

continuously or partial using another tiny DC motor. Basic task of these parts is to deliver the exact 

prescribed dose of radioactive seeds into human prostate with high precision level. Seeds are delivered 

through cannula. During the operation stylet is pushing the seeds through cannula according to control 

algorithm and prescribed surgery plan. Also, the system is designed to take ultrasound images during the 

operation, to update the real-time radiation dose distribution, seed position and number of needles to be 

inserted into prostate, depending of surgery plan. Dedicated software for 3D imaging and control is 

developed to support surgery procedure, [5-6].  

 

2.2 Mathematical modeling 

 

As suggested [7], the most accurate mathematical model for the medical robots should include 

dynamics of the system due to interaction between the robot and the surface. General guidelines for 
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mathematical modeling together with the basic equations are presented. The model of the manipulator with 

its constraints is shown in Figure 2. Generally speaking, open kinematic chain with n joints is analyzed.  

 

 

The generalized coordinates vector, denoted by q, has property q∈ℜn, the contact force vector is 

denoted by f. Force f∈ℜn appears when end-effector touches constrain surface c. The differential equation 

which describes the influence on the contact force to the system is 

fqJqqGqqM T )(),()( +=+ τ��� .                                         (1) 

M(q)∈ℜnxn
 denotes inertia matrix function and G(q)∈ℜn

 is vector function which describes Coriolis, 

centrifugal and gravitational effects. τ is torque vector of the joints, τ∈ℜn. J(q) ∈ ℜnxn is defined as Jacobian 

matrix function. The general dynamic equations for the robotic system in contact with environment is, as in 

[8],  
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Equation (2) consisted of the n differential equations and one algebraic equation with n+1 unknown value, n 

generalized coordinates and scalar multiplierλ. φ(.) is equation of contact surface, and H is a vector function. 

Now it is possible to represent the equation of the robotic system (1) which is in contact with the working 

environment in its state space form (3) with vector d as a disturbance  

( ) ( ) ( ) ( )E t A t B t t= + +x x u d� ,                                     (3) 

where corresponding matrices has been defined as in [7]. Corresponding matrices are given by equation (4). 

For the purpose of further analysis, we considered disturbance vector d=0. 
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When time delay of moving system parts was taken into the account, the system (3) was represented as  

0 1( ) ( ) ( ) ( ) ( )E t A t A t B t tτ= − − + +x x x u d� .                                              (5) 

System (5) represents the dynamics of the medical robot in Figure 1 with time delay in working regime. 

Further analysis was performed in free working regime, i.e. when all inputs into the system have zero values.  

 

3. STABILITY CONCEPTS 

 

In practical problems one is not only interested in the system stability (e.g. in the sense of Lyapunov), 

but also in the bounds of system trajectories. A system could be stable but completely useless because it 

possesses undesirable transient performances. Thus, it may be useful to consider the stability of the systems 

 

Figure 2. Model of the constrained robotic system: a) fixed base, b) manipulator c) 

contact surface, T – contact point, f – contact force 



with respect to certain subsets of state-space, which are a priori defined for a given problem. Besides that, it 

is of particular significance to consider the behavior of dynamical systems only over a finite time interval. 

These bound properties of system responses, i.e. solutions of system models, are important from the 

engineering point of view. Realizing this fact, numerous definitions of the so-called technical and practical 

stability have been introduced in literature. Generally speaking, the definitions were essentially based on the 

predefined boundaries for the perturbation of initial conditions, and the allowable perturbation of the system 

response. In the engineering applications of control systems, this fact becomes important and sometimes 

crucial for the purpose of quantitative characterizing of the systems. In that case, the possible deviations of 

the system response need to be investigated in details. Thus, the analysis of these particular bound properties 

of the solutions is important step, which precedes the design of control signals, with finite time or practical 

stability taken into account.  

In this article time continuous systems have been considered. The various notations of stability over a 

finite time interval for continuous time systems and constant set trajectory bounds were introduced in [9-11]. 

Another approach is based on a classical theory mostly used in deriving sufficient delay independent 

conditions of the finite time stability systems. In the former case a new definition has been introduced based 

on the attractivity properties of the system solution which can be treated as analogous to the quasi-

contractive stability as in [12-13].  

In the following part, we have presented a novel approach to stability of singular time delay systems. 

The results have been directly expressed in terms of matrices E, A0 and A1 naturally occurring in the system 

model, equation (5). In this approach there is no need to introduce any canonical form in the statement of the 

theorems. The geometric theory of consistency leads to the natural class of positive definite quadratic forms 

on the subspace containing all solutions. This fact makes the construction of the Lyapunov and non- 

Lyapunov stability theory possible even for the linear continuous singular time-delay systems (LCSTDS). 

Moreover, the attractive property is equivalent to the existence of symmetric positive definite solutions in a 

weak form of the Lyapunov matrix equation, incorporating conditions which refer to the solutions 

boundedness.  

 

3.1. Notation and preliminaries  

 

The following notation has been used: 

R     Real vector space 

C     Complex vector space 

I    Identity matrix 

( ) n n
ijF f

×= ∈R   Real matrix 

F
T
    Transpose of matrix F 

F > 0   Positive definite matrix 

F ≥ 0   Positive semi definite matrix 

ℜ(F)       Range of matrix F 

ℵ(F)       Null space (kernel) of matrix 

λ(F)       Eigenvalue of matrix F 

max( )TF A Aλ=    Euclidean matrix norm of F 

The general expression of singular control systems with time delay can be written in its differential 

form as: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )

, , , , 0
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E t t t t t t t

t t t
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τ

= − ≥
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x f x x u

x φ

�

,                 (6) 

where ( ) n
t ∈x R  is a state vector, ( ) n

t ∈u R  is a control vector, ( ) n n
E t

×∈R is a singular matrix, 

( )[ ,0], nτ∈ = −φ RC  is an admissible initial state functional, ( )[ ,0], nτ= − RC  is the Banach space of continuous 

functions mapping the interval  [-τ, 0] into n
R  with topology of uniform convergence. The vector function 

satisfies:                  

( ) : n n m n⋅ ℑ× × × →f R R R R ,                              (7) 



 

and it is assumed to be smooth enough to assure the existence and uniqueness of solutions over a time 

interval:   

0 0[ , ( )[t t Tℑ = + ∈R ,                                   (8) 

as well as the continuous dependence of the solutions denoted by ( )0 0, ,t tx x  with respect to t  and the initial 

data.  Quantity T may be either a positive real number or the symbol + ∞ , so that the finite time stability and 

practical stability can be treated simultaneously, respectively. In general, it is not required that  

( ), ,t ≡f 0 0 0 ,                                     (9) 

for an autonomous system, which means that the origin of the state space is not necessarily required to be an 

equilibrium state. Let n
R  denote the state space of a system given by (6) and ( )⋅  the Euclidean norm. Let 

: n nV ℑ× →R R , be the tentative aggregate function, so that ( )( ),V t tx  is bounded and for which ( )tx  is 

also bounded. Define the Eulerian derivative of ( )( ),V t tx along the trajectory of the system (6), with: 

( )( )
( )( )

( )( ) ( )
,

, , .
TV t t

V t t grad V t t
t

∂
 = + ⋅ ∂

x
x x f�                        (10) 

For time-invariant sets it is assumed: ( )S  is a bounded open set. The closure and boundary of ( )S  are 

denoted by ( )S  and ( )∂S , respectively, so: ( ) ( ) ( )\∂ =S S S . Let βS  be a given set of all allowable states of 

the system t∀ ∈ℑ . Set αS , α β⊂S S  denotes the set of all allowable initial states and εS  corresponds with 

the set of allowable disturbances. Sets αS , βS  are connected and a priori known. λ ( ) denotes the 

eigenvalues of matrix ( ). maxλ and minλ  are the maximum and minimum eigenvalues, respectively. ( )σ  

denotes the matrix singular values. 

For our needs we consider a linear continuous singular system with state delay, described by: 

( ) ( ) ( )0 1E t A t A t τ= + −x x x� ,                                   (11) 

with a known compatible vector valued function of  the initial conditions 

( ) ( ) , 0t t tτ= − ≤ ≤x φ ,                                   (12) 

where 0A  and 1A are the constant matrices of appropriate dimensions. Moreover, we shall assume 

that rank E r n= < . 

 

3.3. Basic definitions  

 

Definition 1. Matrix pair (E, A0) is said to be regular if det  (sE - A0) is not identically zero,  [15]. 

Definition 2. The matrix pair (E, A0) is said to be impulsive free if 
0det ( )degree sE A rank E− = , [16]. 

The linear continuous singular time delay system (6) may have an impulsive solution. However, the 

regularity and the absence of impulses of the matrix pair (E, A0) ensure the existence and uniqueness of an 

impulse-free solution of the system. The existence of the solutions is defined in the following Lemma. 

Lemma 1. Suppose that the matrix pair (E, A0) is regular and impulsive free, then the solution to (11) exists 

and is impulse-free and unique on [0, ∞[, [17]. 

As a necessity for the system stability investigation there is a need to establish a proper stability definition. 

Therefore, the following definition can be written. 

Definition 3. (a) LCSTDS (11-12) is said to be regular and impulsive free, if the matrix pair (E, A0) is 

regular and impulsive free. (b) LCSTDS (11-12) is said to be stable, if for any 0ε >  there exists a 

scalar ( ) 0δ ε >  such that, for any compatible initial conditions ( )tφ , ( ) ( )
0

sup
t

t
τ

δ ε
− ≤ ≤

≤φ  the solution ( )tx  of 

system (6) satisfies ( ) , 0t tε≤ ∀ ≥x . Moreover, if ( )lim 0
t

t
→∞

→x , the system is said to be asymptotically 

stable, [17]. 

  

 



4. MAIN RESULTS 

 

Definition 4. Singular time delayed system (11-12) is finite time stable with respect to { }, , , ,Rα β α βℑ < ,  

and 0R > , if  
[ ]

( ) ( )
, 0

sup T T

t

t E R E t
τ

α
∈ −

≤φ φ  implies ( ) ( ) ,T Tt E R E t tβ ∀ ∈ ℑx x < . 

Finally, by using matrix inequalities, we can derive the sufficient condition under which the system (11-12) 

will be regular, impulse free and finite time stable. 

Theorem 1. Singular time delayed system (11-12) is impulse free and finite time stable with respect to 

( ){ }2

, , , ,Rα β ℑ ⋅S S α β<  if, letting 
1 1
2 2TPE E R R E= Π , there exist a positive scalar 0℘>  and two positive 

definite matrices n n×Π ∈R , and n n
Q

×∈R , such that the following conditions hold: 

0T TPE E P= > ,                                                (13) 
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and: 
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Proof. Let us consider the following Lyapunov-like, aggregation function: 

( )( ) ( ) ( ) ( ) ( )
t

T T

t

V t t PE t Q d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x ,                        (16) 

Denoting by ( )( )V tx�  time derivative of ( )( )V tx  along the trajectory of system (6), it can be written: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
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where: 
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1
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A P Q
τ
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From (13) and (16) it can be derived: 
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( ) ( ) ( ) ( ) ( )( )

0 0

0 0 0 0

T T T T

t

T T T T T

t

t

T T

t

PE PE
V t t t t t t t t t

t t t PE t t PE t t PE t Q d

t PE t Q d V t

τ

τ

ϑ ϑ ϑ

ϑ ϑ ϑ

−

−

 −℘  −℘   
= Γ = Ξ − = Ξ − =    

    

Ξ +℘ <℘ <℘ +℘ =

 
℘ +℘ =℘ 
 

∫

∫

x ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ x x x x x x x x

x x x x x

�

             (19) 

 since ( ) ( ) 0T
t tΞ <ζ ζ . Multiplying (19) by t

e
−℘ , it is obtained: 

( )( )( ) 0td
e V t

dt

−℘ <x .                                              (20) 

Integrating (20) from 0 to t, with t ∈ ℑ , it follows: 

( )( ) ( )( )0tV t e V−℘<x x .                                             (21) 



 

Consequently: 

( )( ) ( ) ( ) ( ) ( )
0

0 0 0T TV PE Q d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x .                      (22) 

 Since: 

1 1
2 2T T

PE E PT E R R E= = Π ,                                       (23) 

from (22) and first condition of  Definition 4,  follows: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
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Furthermore, it can be calculated that: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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2 2
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t

T T T

t

T T T T
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λ

−
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x x x x

.                                            (25) 

From (25) it is obvious: 

( ) ( )
( )

( )( )
min

1T T
t E RE t V t

λ
<

Π
x x x ,                                                                              (26) 

so combining (21), (24) and (26), leads to: 

 ( ) ( )
( )

( )( )
( ) ( )

( )
max max

min min

1
0T T t t

Q
t E RE t e V e

λ τ λ
α

λ λ
−℘ −℘

Π + ⋅
< <

Π Π
x x x .                           (27) 

Condition (25) and inequality (27) imply: 

( ) ( ) ,T T
t E R E t tβ< ∀ ∈ ℑx x .                                (28) 

q.e.d.  
  

 

5. DYNAMIC ANALYSIS 

 

In this section, the dynamic analysis of the system (3) was performed. The practical stability of the 

system with respect to Definition 4 was investigated.  

 

 

 

 

 

 

 

Figure3. Block diagram of the system in contact with environment and with appropriate feedback control signals  

 

 Figure 3 represents the system govern with feedback control law u = - KCx, where K is a feedback 

matrix. Figure 4 represent the responses of the system to the sine function in the case when the condition 
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satisfied. 

 

It was observed that when condition of Definition 4 was not satisfied, the system showed instable behavior.  

 

 

Figure 5.Representative system trajectories and norms 

 

Figure 5 represents the representative case of the system trajectories for some β,  as in condition (28). For β1, 

the system is practically unstable on t∈[0, 3], since the condition (28) does not hold for chosen t. If we chose 

new value β2, system is practically stable for any choice of t, no matter is delay is present or not. Similarly, 

for some β3, analyzed in the sense of Theorem 1, it was observed that system is stable on t∈[4, ∞[.  

 

 

6. CONCLUSION 

 

Generally, this paper extends some of the basic results in the area of the non-Lyapunov stability to the 

particular class of LCSTDS. Furthermore, part of this result is a geometric counterpart of the algebraic 

theory in [1] supplemented with appropriate criteria to cover the need for system stability in the presence of 

actual time delay terms. A novel sufficient delay-dependent criterion for the finite time stability, based on 

LMIs approach, has been established. The theory was validated and implemented on the robotic system for 

automatic drug delivery. The mathematical modeling, control and stability of the system were tested using 

the proposed approach. 

 

ACKNOWLEDGMENT 

 

This work has been supported by The Ministry of Science and Technological Development of Serbia 

under Project ON 174 001. 

 

 

7. REFERENCES 

 
[1] S.L. Campbell, Singular Systems of Differential Equations, Pitman, Marshfield, MA, 1980. 

[2] P.C. Müller, Stability of Linear Mechanical Systems with Holonomic Constraints, Applied Mechanics Review, 

Vol.46 (11) (1993) 160–164. 

[3] D.Lj. Debeljković, D.H. Owens, On practical stability of singular systems, Proc. Melecon Conf. 85, Madrid, Spain 

1985, 103-105. 

 

Figure 4.Sinusoidal response when the origin condition of all initial states from αS  was not and when it 

was satisfied 



 

[4] D.Lj. Debeljković, V.B. Bajic, Z. Gajic, B. Petrovic, Boundedness and existence of solutions of regular and 

irregular singular systems, Automatic Control No.1 (1993) 69–78.  

[5] I. Buzurovic, T.K. Podder, and Yan Yu, Prediction Control for Brachytherapy Robotic System, Journal of 

Robotics, Vol. 2010 (2010), 155-165.  

[6] I. Buzurovic, T.K. Podder, and Y. Yu, Force Prediction and Tracking for Image-guided Robotic System using 

Neural Network Approach, IEEE Biomedical Circuits and Systems Conference, BioCAS, Baltimore, Maryland, 

USA 2008, 41-44. 

[7] I. Buzurovic, D.Lj. Debeljkovic, Contact Problem and Controllability for Singular Systems in Biomedical 

Robotics, International Journal of Information and System Sciences, Volume 6(2) (2012) 128-141. 

[8] N.H. McClamroch, Singular Systems of Differential Equations as Dynamic Models for Constrained Robot Systems, 

Proc. of the 1986  IEEE International Conf. on Robotics and Automations, Vol.3 1986, 21-28. 

[9] D.Lj. Debeljković, M.P. Lazarevic, Đ. Koruga, S. Tomaševic, Finite time stability of singular systems operating 

under perturbing forces: Matrix measure approach, Proc. AMSE Conference, Melbourne, Australia 1997, 447-

450. 

[10] C.Y. Yang, Q.L. Zhang, Y.P. Lin, Practical Stability of Descriptor Systems, Dynamics of Continuous, Discrete and 

Impulsive Systems, Series B(12.b) (2005), 44–57. 

[11] Y.Y. Nie, D.Lj. Debeljković, Non–Lyapunov Stability of Linear Singular Systems: A Quite new Approach in Time 

Domain, Dynamics of Continuous, Discrete and Impulsive Systems, Vol.11, Series A: Math. Analysis, No.5-6 

(2004), 751-760. 

[12]  C.Y Yang, Q.L. Zhang, L. Zhou, Practical Stabilization and Controlability of Descriptor Systems, International 

Journal of Inforamation and System Science, Vol. 1, No. 3-4 (2005), 455-466. 

[13] Y. Shen, W. Shen, Finite-Time Control of Linear Singular Systems with Parametric Uncertainties and 

Disturbances, Automatica (2006), 634-637. 

[14] D.Lj. Debeljković, M.P. Lazarevic, Đ. Koruga, S.A. Milinkovic,  M.B. Jovanovic, Further results on the stability 

of linear nonautonomous systems with delayed state defined over finite time  interval, Proc. IEEE ACC 2000, 

Chicago, Illinois, USA 2000, 1450-1451. 

[15] C. Yang, Q. Zhang, Y. Lin, L. Zhou, Practical stability of descriptor systems with time-delay in terms of two 

measurements, J.of the Franklin Institute, (2006), 635-646. 

[16] S. Xu, P.V. Dooren, R. Stefan, J. Lam, Robust Stability and Stabilization for Singular Systems with   State Delay 

and Parameter Uncertainty, IEEE Trans. Automat.  Control, AC-47(7) (2002), 1122-1128.  

[17] D.H. Owens, D.Lj. Debeljković, Consistency and Lyapunov Stability of Linear Descriptor Systems:  a Geometric 

Analysis, IMA Journal of Math. Control and Information, No.2 (1985) 139-151. 

 
�� 

 

НЕЉАПУНОВСКА СТАБИЛНОСТ СИНГУЛАРНИХ СИСТЕМА: КЛАСИЧАН И МОДЕРАН ПРИЛАЗ 

СА ПРИМЕНОМ У АУТОМАТСКОЈ ИСПОРУЦИ ЛЕКОВА  

 

Сажетак: У овом раду изведени су довољни услови практичне стабилности и стаблиности на 

коначном временском интервалу за класу линеарних временски непорекидних сингуларних 

система са чистим временским кашњењем. Сигуларни системи и сингуларни системи са 

чистим временским кашњењем могу бити математички описани једначинама типа: Ex′(t) = 

Ax(t) и Ex′(t) = A0x(t) – A1x(t - τ), следствено. Анализирајући стабилност на коначном 

временском интервалу изведени су нови услови, и то зависни и независни од временског 

кашњења. Предложени прилаз се заснива на употреби Љапуновљевих функција и њиховим 

особинама на потпростору конзистентинх почетних финкција или услова. Ове функције не 

морају бити позитивно одређене у целом простору стања, нити негативно одређене дуж 

трајекторија система. Када се разматра практична стабилност, овај прилаз се комбинује са 

класичном Љапуновским техником која гарантује осибину прилачења система. У циљу 

добијања мање конзервативних резултата, коришћена је и ЛМИ метода. Предложени метод је 

примењен и тестиран на на једном медицинском роботском систему. Систем је дизајниран за 

разлишите намене, као што су аутоматска испорука медикамената, биопсија или испорука 

радиоактивних зрнаца унутар оболелог ткива. За такав систем развијена је посебна техника 

моделирања, управљања и анализе стабилности описаног система. У сврху математичког 

моделирања, систем је декомпонован на механички део и на радну околину која пресудно 

утиче на динамичко понашање. Овакав приступ се показао адекватним у случају када 

спољашње силе утичу на динамику система. Добијен математички модел се анализира као 

сингуларни систем аутоматског управљања. У случају када се утицај спољашњих сила може 

занемарити, динамичко понашање се анализира класичним методама теорије управљања. 

Кључне речи: системи са кашњењем, сингуларни системи, медицински робот 
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