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Summary: In this paper sufficient conditions for both practical and finite time
stability of linear singular continuous time delay systems were introduced. The singular and
singular time delay systems can be mathematically described as Ex’(f) = Ax(f) and EX'(f) =
Aox(f) — Aix(t - 7), respectively. Analyzing finite time stability, the new delay independent
and delay dependent conditions were derived using the approaches based on Lyapunov-like
functions and their properties on the subspace of consistent initial conditions. These
functions do not need to be positive on the whole state space and to have negative
derivatives along the system trajectories. When the practical stability was analyzed, the
approach was combined with classical Lyapunov technique to guarantee the attractivity
property of the system behavior. Furthermore, an LMI approach was applied to obtain less
conservative stability conditions. The proposed methodology was applied and tested to a
medical robotic system. The system was designed for different insertion tasks playing
important roles in automatic drug delivery, biopsy or radioactive seeds delivery. In this
paper we have summarized different techniques for adequate modeling, control and
stability analysis of the medical robots. The model of the robotic system, with the tasks
described above, the entire system can be decomposed to the robotic subsystem and the
environment subsystem. Modeling of the system by the method mentioned has been proved
to be suitable when the force appears as a result of the interaction of the two subsystems.
The mathematical model of the system has a singular characteristic. The singular system
theory could be applied to the case described. It is well known that all mechanical system
possesses some delay. In that case a theory of singular systems with delayed states may be
applied, as well. For the second phase in which there is no interaction, the dynamic
behavior can be analyzed by the classic theory.
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1. INTRODUCTION

It was noticed that the characteristics of the dynamic and static state should be considered at the same
time for some systems. Singular systems (also referred to as degenerate, descriptor, generalized, differential-
algebraic or semi-state systems) are systems whose dynamic is governed by the complexity of algebraic and
differential equations. Recently, many researchers have paid much attention to singular systems and they
have accomplished numerous valuable conclusions. The complex nature of singular systems generates many
difficulties in the analytical and numerical solution of such systems, particularly during the control tasks.
Recently, the singular systems have been one of the major research fields of control theory. During the past
three decades singular systems have attracted significant attention due to the comprehensive applications in
economics, as the Leontief dynamic model, in electrical applications using the theory described in [1], in
mechanical models as in [2], efc. Singular systems in control theory have been initially discussed in [3] and
[4]. The investigation of time delay systems has been carried out over many years. Time delay is very often
encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical
processes, long transmission lines, etc.



It has been observed that variety of singular systems is characterized by the phenomena of time delay.
Such systems are called singular differential systems with time delay. These systems have many special
characteristics. In order to mathematically describe those systems in more accurate manner, and to control
them more effectively, this specific class of the singular systems was investigated in details. In this article,
the new approach to the stability of the singular time delay systems was presented.

2. SYSTEM MODELING

In this section a procedure for the system modeling was described. A mathematical model of the
presented medical robotic system was used for validation of the main results and stability investigation. The
mathematical equations of the system were analyzed further and new delay independent and delay dependent
conditions were implemented in practical stability analysis.

2.1 System description

The surgery module consists of 2 degree-of-freedom (DOF) ultrasound probe driver and SDOF
needling module (Figure 1). The ultrasound (US) module can be translated and rotate independently by two
DC servomotors fitted with high-resolution optical encoders and gearboxes. In this study, we analyzed SDOF
needling module which consist of gantry and needle driver.
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Figure 1. Video-guided robotic system for insertion tasks. The proposed methodology was tested on this system.
Surgery module: consists of 2DOF ultrasound probe driver and 5DOF needling module. Needling module consists of
gantry and needle driver. Mathematical model of the system was singular system as in equations (3-4)

Gantry connects the needle-driving module to the positioning platform. The gantry has two translation
motions and one rotational motion (pitching). Needle driver subsystem is consists of a hollow needle
(cannula) and solid needle (stylet) driven separately by two DC servomotors. The cannula rotates
continuously or partial using another tiny DC motor. Basic task of these parts is to deliver the exact
prescribed dose of radioactive seeds into human prostate with high precision level. Seeds are delivered
through cannula. During the operation stylet is pushing the seeds through cannula according to control
algorithm and prescribed surgery plan. Also, the system is designed to take ultrasound images during the
operation, to update the real-time radiation dose distribution, seed position and number of needles to be
inserted into prostate, depending of surgery plan. Dedicated software for 3D imaging and control is
developed to support surgery procedure, [5-6].

2.2 Mathematical modeling

As suggested [7], the most accurate mathematical model for the medical robots should include
dynamics of the system due to interaction between the robot and the surface. General guidelines for



mathematical modeling together with the basic equations are presented. The model of the manipulator with
its constraints is shown in Figure 2. Generally speaking, open kinematic chain with n joints is analyzed.
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Figure 2. Model of the constrained robotic system: a) fixed base, b) manipulator c)
contact surface, T — contact point, f — contact force

The generalized coordinates vector, denoted by ¢, has property ge R”, the contact force vector is
denoted by f. Force fe R" appears when end-effector touches constrain surface ¢. The differential equation
which describes the influence on the contact force to the system is

M(q)g+G(q.q)=t+J"(9)f - (M

M(g)e R™ denotes inertia matrix function and G(g)e R" is vector function which describes Coriolis,
centrifugal and gravitational effects. 7is torque vector of the joints, 7= R". J(q) € R™" is defined as Jacobian
matrix function. The general dynamic equations for the robotic system in contact with environment is, as in

(81,
{M(q) O}H _ {— G(q.9)+7+J" (@)D" (H(q)A
0 0f4 P(H (q)) ‘ )

Equation (2) consisted of the n differential equations and one algebraic equation with n+1 unknown value, n
generalized coordinates and scalar multiplierd. ¢(.) is equation of contact surface, and H is a vector function.
Now it is possible to represent the equation of the robotic system (1) which is in contact with the working
environment in its state space form (3) with vector d as a disturbance

Ex(t) = Ax(t) + Bu(t) +d(1) , (3)

where corresponding matrices has been defined as in [7]. Corresponding matrices are given by equation (4).
For the purpose of further analysis, we considered disturbance vector d=0.

0 I 0

I 0 0 N 0 0
E=|0 M(q)) O, A= a—(G—JTDTxi)IO 0 J'D'ly| B=|1], un=dr, d@)=|A7| (4)
0 0 0 1 0 0
DJ |, 0 0

When time delay of moving system parts was taken into the account, the system (3) was represented as

Ex(t) = Apx(t)— Ax(t —7)+ Bu(t) +d(z) . (5)
System (5) represents the dynamics of the medical robot in Figure 1 with time delay in working regime.
Further analysis was performed in free working regime, i.e. when all inputs into the system have zero values.

3. STABILITY CONCEPTS
In practical problems one is not only interested in the system stability (e.g. in the sense of Lyapunov),

but also in the bounds of system trajectories. A system could be stable but completely useless because it
possesses undesirable transient performances. Thus, it may be useful to consider the stability of the systems



with respect to certain subsets of state-space, which are a priori defined for a given problem. Besides that, it
is of particular significance to consider the behavior of dynamical systems only over a finite time interval.
These bound properties of system responses, i.e. solutions of system models, are important from the
engineering point of view. Realizing this fact, numerous definitions of the so-called technical and practical
stability have been introduced in literature. Generally speaking, the definitions were essentially based on the
predefined boundaries for the perturbation of initial conditions, and the allowable perturbation of the system
response. In the engineering applications of control systems, this fact becomes important and sometimes
crucial for the purpose of quantitative characterizing of the systems. In that case, the possible deviations of
the system response need to be investigated in details. Thus, the analysis of these particular bound properties
of the solutions is important step, which precedes the design of control signals, with finite time or practical
stability taken into account.

In this article time continuous systems have been considered. The various notations of stability over a
finite time interval for continuous time systems and constant set trajectory bounds were introduced in [9-11].
Another approach is based on a classical theory mostly used in deriving sufficient delay independent
conditions of the finite time stability systems. In the former case a new definition has been introduced based
on the attractivity properties of the system solution which can be treated as analogous to the quasi-
contractive stability as in [12-13].

In the following part, we have presented a novel approach to stability of singular time delay systems.
The results have been directly expressed in terms of matrices E, Ay and A; naturally occurring in the system
model, equation (5). In this approach there is no need to introduce any canonical form in the statement of the
theorems. The geometric theory of consistency leads to the natural class of positive definite quadratic forms
on the subspace containing all solutions. This fact makes the construction of the Lyapunov and non-
Lyapunov stability theory possible even for the linear continuous singular time-delay systems (LCSTDS).
Moreover, the attractive property is equivalent to the existence of symmetric positive definite solutions in a
weak form of the Lyapunov matrix equation, incorporating conditions which refer to the solutions
boundedness.

3.1. Notation and preliminaries

The following notation has been used:

R Real vector space

C Complex vector space

I Identity matrix
F=(f;)eR™ Real matrix

F' Transpose of matrix F

F>0 Positive definite matrix
F>0 Positive semi definite matrix
RE) Range of matrix F

X(F) Null space (kernel) of matrix
AF) Eigenvalue of matrix F
|F||=+/Amax(A" A) Euclidean matrix norm of F

The general expression of singular control systems with time delay can be written in its differential
form as:
E(t)x(r)=f(1.x(¢).x(t-7),u(r)), 120
x(t)=¢(t), —7<1<0 ’ ©
where x(r)eR" is a state vector, u(r)eR" is a control vector,E(r)e R™"iS a singular matrix,

9l = ([_7,()], R") is an admissible initial state functional, ¢ = ([_1-,()], ]R”) is the Banach space of continuous

functions mapping the interval [-7, 0] into R" with topology of uniform convergence. The vector function
satisfies:
f():IxR"XR"xR" - R", (7



and it is assumed to be smooth enough to assure the existence and uniqueness of solutions over a time
interval:

S=[t,,(t, +T)e R, (8)

as well as the continuous dependence of the solutions denoted by x(z, #,,x,) with respect to ¢ and the initial
data. Quantity 7 may be either a positive real number or the symbol +oo, so that the finite time stability and
practical stability can be treated simultaneously, respectively. In general, it is not required that

£(2,0,0)=0, )
for an autonomous system, which means that the origin of the state space is not necessarily required to be an
equilibrium state. Let R" denote the state space of a system given by (6) and "()" the Euclidean norm. Let
V:3xR" > R", be the tentative aggregate function, so that V (z,x(¢)) is bounded and for which | x(r)| is

also bounded. Define the Eulerian derivative of V (tx(t)) along the trajectory of the system (6), with:

V(LX(Q):Eﬁ:gi?gll+[gnuiV(nx(ﬂ)]Tf(). (10)

For time-invariant sets it is assumed: 5( ) is a bounded open set. The closure and boundary of 5( ) are

denoted by .S:( ) and 85( ) respectively, SOZaS( ) :.S_“( )\5( - Let Sy be a given set of all allowable states of
the systemVte 3. Set S, S, c S, denotes the set of all allowable initial states and S, corresponds with
the set of allowable disturbances. Sets S,, S s are connected and a priori known. A () denotes the

eigenvalues of matrix ( ). 4,, and A,; are the maximum and minimum eigenvalues, respectively. o)

n

denotes the matrix singular values.
For our needs we consider a linear continuous singular system with state delay, described by:

Ex(r)=Ayx(t)+Ax(r—-7), (11)

with a known compatible vector valued function of the initial conditions

x(r)=o(r), —r<1<0, (12)
where A, and A, are the constant matrices of appropriate dimensions. Moreover, we shall assume

thatrank E=r<n.

3.3. Basic definitions

Definition 1. Matrix pair (E, Ay) is said to be regular if det (sE - Ay) is not identically zero, [15].

Definition 2. The matrix pair (E, Ay) is said to be impulsive free if degree det(sE — A))=rank E , [16].

The linear continuous singular time delay system (6) may have an impulsive solution. However, the
regularity and the absence of impulses of the matrix pair (E, Ay) ensure the existence and uniqueness of an
impulse-free solution of the system. The existence of the solutions is defined in the following Lemma.

Lemma 1. Suppose that the matrix pair (E, Ay) is regular and impulsive free, then the solution to (11) exists
and is impulse-free and unique on [0, o[, [17].

As a necessity for the system stability investigation there is a need to establish a proper stability definition.
Therefore, the following definition can be written.

Definition 3. (a) LCSTDS (11-12) is said to be regular and impulsive free, if the matrix pair (E, Ap) is
regular and impulsive free. (b) LCSTDS (11-12) is said to be stable, if for any £>0 there exists a

scalar 5(£) >0 such that, for any compatible initial conditions¢(r), sup | ¢(r)|<5(&) the solution x(t) of
-7<1<0

system (6) satisfies ||x(t)|| <g,Vt20. Moreover, if lim ||x(t)|| — 0, the system is said to be asymptotically
t—>00

stable, [17].



4. MAIN RESULTS

Definition 4. Singular time delayed system (11-12) is finite time stable with respectto { &, 8, 3, R}, a< S,

and R>0, if SUP o' (1)E'RE@(t)< a implies X" (1)E"REx(1)< 3, Vte 3.

te[-7,0

Finally, by using matrix inequalities, we can derive the sufficient condition under which the system (11-12)

will be regular, impulse free and finite time stable.

Theorem 1. Singular time delayed system (11-12) is impulse free and finite time stable with respect to

{&;, 5},,3, R, || () ||2} a < f if, letting PE = ETR*TI R%E, there exist a positive scalar g >0 and two positive

definite matrices ITe R™, and Qe R™, such that the following conditions hold:
PE=E"PT >0,

—
ey —
H =

(AjP+PA,+Q)-@EP PA, <0
ATP" -0 ’

and:

el {/’Lmax (H) +T;Lmax (Q)J <
Amin (1)

ﬁ, Vte 3.
imin (H) o
Proof. Let us consider the following Lyapunov-like, aggregation function:

t

V(x(r))=x" () PEx(r)+ I x' (9)0x(8)d¥

-7

Denoting by V (x(t)) time derivative of V (x()) along the trajectory of system (6), it can be written:

1

V(x(t))=x" (1) PEx(t)+x" (t)PEX(t)+% j x' ()0 x(8)d

-7

=x" (1) (AJP+PA, ) x(1)+x" (t) PAx(t—7)+x" (t—7) A P"x(r)
+x" (1) 0x(t)-x" (t-7)0x(1-7) =& (1)T'E (1)

where:
_((ASP+PA,+Q) PA,
[x (t-7 )] F—[ ATPT o)
From (13) and (16) it can be derived:
(x(0) =€ (st =€ (o == 75" gjjc(rw(r)zc(r)—cr(f)[“ifE gjm):

¢ (1)Z¢(t)+px" (1) PEx(t) < ox" (1) PEx(t) < px" (t) PEx(t +go.[ )0 x(8)d¥

1—

p[ () PEx(1) 0| ¥ (8)0x(8)d ]=sov(x(r))

-7

since ¢’ (¢)2¢(¢) <0. Multiplying (19) by ™", it is obtained:

di(e—smv(x(t)))w.

t

Integrating (20) from 0 to ¢, with re 3, it follows:

V(x(1))<e*'V(x(0)).

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

21



Consequently:

V(x(0))=x" (0) PEx(0)+ j x' () 0x(8)dv.
Since: N
PE=E'PT=E'R°TIR’E,

from (22) and first condition of Definition 4, follows:

0 0

V(x(0))=x" (0)E"R* TR*Ex(0)+ [ X" (8)0x(89)dB < 4, (M)x" (0) E"REX(0)+4,,, (Q) [ 0" () (2)d®?

<A (M)-a+d,, (Q)af d9<a(A,, (M)+7-1,,(0))

Furthermore, it can be calculated that:
t

V(x(¢))=x" (t) PEx()+ J- x' (9)0x(89)dd>x" (t) PEx(t)

=x' (1)E"R*TIR*Ex(t) > A, (T1)x" (t) E" REX (1)

From (25) it is obvious:

1

so combining (21), (24) and (26), leads to:

1, ot A (D) +7- 2, (Q)
TR L — 1y

Condition (25) and inequality (27) imply:

x' (t)E"REx(1) <

x' (1)E"REx(1) <

x (t)E'REx(t)<f, Vte$3.

g.e.d.

5. DYNAMIC ANALYSIS

(22)

(23)

(24)

(25)

(26)

(27)

(28)

In this section, the dynamic analysis of the system (3) was performed. The practical stability of the

system with respect to Definition 4 was investigated.
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Figure3. Block diagram of the system in contact with environment and with appropriate feedback control signals

Figure 3 represents the system govern with feedback control law u = - KCx, where K is a feedback
matrix. Figure 4 represent the responses of the system to the sine function in the case when the condition

sup @' (1)E"RE(t)<a for all initial states inside the invariant subspace S, was not and when it was

te[-7,0]



satisfied.
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Figure 4.Sinusoidal response when the origin condition of all initial states from S, was not and when it

was satisfied

It was observed that when condition of Definition 4 was not satisfied, the system showed instable behavior.
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Figure 5.Representative system trajectories and norms

Figure 5 represents the representative case of the system trajectories for some S, as in condition (28). For 3,
the system is practically unstable on r€ [0, 3], since the condition (28) does not hold for chosen ¢. If we chose
new value f,, system is practically stable for any choice of ¢, no matter is delay is present or not. Similarly,
for some f;, analyzed in the sense of Theorem 1, it was observed that system is stable on 7€ [4, oo[.

6. CONCLUSION

Generally, this paper extends some of the basic results in the area of the non-Lyapunov stability to the
particular class of LCSTDS. Furthermore, part of this result is a geometric counterpart of the algebraic
theory in [1] supplemented with appropriate criteria to cover the need for system stability in the presence of
actual time delay terms. A novel sufficient delay-dependent criterion for the finite time stability, based on
LMIs approach, has been established. The theory was validated and implemented on the robotic system for
automatic drug delivery. The mathematical modeling, control and stability of the system were tested using
the proposed approach.
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OR

HEJBAIIYHOBCKA CTABMJIHOCT CUHI'YJIAPHUX CUCTEMA: KJIACUYAH U MOJIEPAH TIPHUJIA3
CA TIPUMEHOM Y AYTOMATCKOJ UCITIOPYIIU JIEKOBA

Caxxerak: Y OBOM pajy M3BEACHH Cy IOBOJbHH YCIOBH MPaKTHYHE CTAGHIHOCTH U CTAOIMHOCTH Ha
KOHAYHOM BPEMEHCKOM HHTEPBAIy 3a KJIACy JIMHEAPHHX BPEMEHCKH HEIOPEKHIHUX CHHIYIAPHUX
CHCTeMa Ca YHCTHM BPEMEHCKHM KallbeleM. CHryTapHU CHCTEMH W CHHTYJIApHH CHCTEMH ca
YHUCTHM BPEMCHCKHAM KalllbCHEM MOrYy OWTH MaTeMaTHYKH OIMCAaHH jefHavunHaMa Tuma: EX'(f) =
Ax(f) m EX'(f) = Apx(f) — Ax(t - 1), chaenctBeHo. AHamu3upajyhu CTaOMIHOCT Ha KOHAYHOM
BPEMEHCKOM HHTEpBAIy HM3BEACHH CY HOBH YCIIOBH, U TO 3aBHCHH W HE3aBHCHU OJI BPEMEHCKOT
Kalmbemba. [IpeiokKeH npuia3 ce 3acHHBa Ha ymoTpeOu JbamyHOBIbEBHX (YHKIHMja U HHXOBHM
ocoOvMHaMa Ha MOTIPOCTOPY KOH3UCTCHTHHX MOYETHUX (QUHKIHWja wid ycioBa. OBe (yHKIHje He
Mopajy OMTH MO3MUTHBHO onpeljeHe y LeNIOM IPOCTOpPY CTama, HUTH HEraTHBHO oipeljeHe ayk
TpajekTopuja cucrema. Kama ce pasmarpa mpakTH4Ha CTaOWIIHOCT, OBaj MpHia3 ce KOMOWHYyje ca
KI1acH4HOM JballyHOBCKHM TEXHHKOM KoOja TapaHTyje OCHOWHY Npuiadema cucTeMa. Y by
noOujama Marbe KOH3epBaTUBHUX pe3yiTara, kopuiihena je u JIMU merona. [IpeanoxeHn MeTox je
NPUMEECH M TECTHPAH Ha HA jeJIHOM MEIHMIMHCKOM poOoTcKOM cructeMy. CHCTeM je AM3ajHUpaH 3a
pa3UIIMTEe HAMEHE, Kao IITO Cy ayTOMarcKa HMCIIOpyKa MeJuKaMeHara, OHOICHja WM HCIIOpyKa
paanOaKTHBHHX 3pHAI[A YHYTap 00OJeior TKMBAa. 3a TaKaB CHCTEM pa3BHjeHA je moceOHA TEXHHUKa
MOJIEIMpama, YIpaB/baka M aHAIH3C CTAOWIHOCTH ONHMCAHOT CHCTeMa. Y CBPXY MareMaTHYKOr
MOJICNUpamba, CHCTEM je ICKOMIIOHOBAH HAa MEXaHHYKH €0 U Ha PaJHy OKOJUHY KOja MPECyIHO
yTAYe Ha OUHAMHYKO MOHamame. OBakaB MPHCTYN Ce II0KA3a0 aiACKBATHUM y CiIy4ajy Kajaa
CIIOJBAIIELE CHJIC YTHYY Ha AWHAMUKY cucTeMa. JI0OHMjeH MaTeMaTHYKH MOJCN Ce aHalu3Hpa Kao
CHHTYJIAPHHU CHCTEM ayTOMAaTCKOTI yIpaBJbama. Y Cllydajy Kaja ce YTHIA] CIOJbAIlBUX CHIa MOXKE
3aHEeMApHUTH, TUHAMHUYKO OHAIIAhE CE aHAM3KUPa KIIACHYHUM METOZaMa TeOpHje YIPaBJbarba.
KibyuHe pequ: CHCTEMH Ca KallllbeHheM, CHHIYIApHUA CUCTEMH, METUIUHCKH POOOT
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