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ABSTRACT 

The Basel Committee on banking supervision at the Bank for International Settlements 

requires financial institutions to meet capital requirements on base VaR estimates, which 

has made the VaR methodology a fundamental market risk management tool employed by 

the financial institutions. 

Although it is widely used, the practicability of VaR was questioned and the traditional 

approaches to VAR computations – the historical simulation, variance-covariance method, 

Monte Carlo simulation and stress-testing – were claimed to provide a non-satisfactory 

evaluation of possible losses for stock markets with long memory in returns. 

This paper presents an empirical analysis of the value-at-risk in the financial environment 

of the regulated financial markets on the Balkans (Turkey, Croatia, Romania and 

Bulgaria). The results obtained for the considered stock exchange indices BET, CROBEX, 

ISE100 and SOFIX indicate presence of long-term dependencies in the logarithmic returns 

and variance, which means the returns are featured by the so called "fat tails" and 

respectively the assumption of a normal distribution of returns is inappropriate. At all 

indices under survey the VaR(1%) estimates which were calculated for the period Q12002-

Q12014 through historical simulation and under the assumption of normal and Student t 

distribution of the returns underestimate the actual market risk and respectively the results 

we have received evaluate the models as inaccurate. When estimating a Monte Carlo 

simulation which includes a model of the conditional heteroscedasticity without any long-

term dependency the tests for adequacy of the model do not give unambiguous results. The 

models of conditional heteroscedasticity proposed by the author consider the long-term 

dependency computed it in three different classical methods (Rescaled-Range Analysis 

(Hurst Method), Whittle Method and Wavelets Method). They pass successfully through the 

test of adequacy and generally provide more accurate VaR (1%) forecasts. 

For the purposes of this analysis the following statistical tests are used: Kupiec’s test- 

likelihood ratio unconditional coverage test and Christoffersen’s test - likelihood ratio 

independence coverage and likelihood ratio conditional coverage test. 
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INTRODUCTION 

Studies of market risk in the financial environment of regulated stock markets are 

particularly relevant against the backdrop of the global financial crisis of 2007 and the 

subsequent sovereign debt crises in Greece (since 2010), Ireland and Portugal (since 2011) and 

Spain (from 2012). This is even more effective for Bulgaria and the regulated capital markets 

of the Balkans (Turkey, Croatia and Romania) in view of the fact that most of them are small 

and newly arisen regional markets. An exception to this is the stock market in Turkey, which is 

an established regional market and for it can be expected much weaker effects caused by its 

neighboring regional markets.  

Patev et al. (Plamen Patev, Nigokhos Kanaryan and Katerina Lyroudi, 2009) have 

examined the Bulgarian stock market risk over the period 24 October 2000 – 19 November 

2004. The result of their research shows that the SOFIX index has basic characteristics that are 

observed in most of the emerging stock markets, namely: high risk, significant autocorrelation, 

non-normality and volatility clustering. Three models have been applied to assess and estimate 

the Bulgarian stock market risk: RiskMetrics, EWMA with t-distributed innovations and 

EWMA with GED distributed innovations. The results revealed that the EWMA with t-

distributed innovations and the EWMA with GED distributed innovations evaluate the risk of 

the Bulgarian stock market adequately. 

Zivkovitch et al. (Zivkovitch, Measuring market risk in EU new member states, 2007) 

applied VaR methodology and historical simulation on the Croatian stock market indices in an 

effort to measure Value-at-Risk. Zivkovitch et al.  has also analyzed VaR models for ten small 

and newly arisen regional markets and concluded that use of common VaR models to forecast 

VaR is not suitable for transition economies. (Zivkovitch, Testing popular VaR models in EU 

new member and candidate states, 2007). 

Kasman (Kasman, 2009) has examined long memory property of the Turkish futures 

market and the estimation results provide evidence supporting the FIGARCH models, in the 

sense that the FIGARCH models fit the data series better than the GARCH models. The results 

of the FIGARCH model show that estimates of the long memory parameters are significantly 

different from zero, suggesting that volatility series are long memory processes in the Turkish 

futures market. The estimation results also indicate that the skewed Student-t distribution 

outperforms the normal distribution. The VaR values have also been estimated using the 

FIGARCH (1, d, 1) model with three distributions. Comparing the estimated in-sample and out-

of-sample VaR values based on Kupiec’s LR test, the skewed Student-t model performs better 

than the normal distribution in describing the return series in the Turkish futures market. In 

summary, since long memory model outperforms the traditional short-memory model risk 

analyzing methods requiring variance series, such as VaR, provide more efficient results when 

the variance series of the ISE-30 index futures returns is filtered by the long memory model, 

rather than by the short memory model. Therefore, these findings would be helpful to the 

financial managers, investors and regulators dealing with the Turkish futures market. 

Dorich (Dorich, 2011) has examined several alternative models of return distribution for 

BELEX15 to compare the predictive ability of the VaR estimates based on them. In the case of 

BELEX15 index returns asymmetric behavior was not discovered. Since the distribution of the 
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log-returns exhibits leptokurtosis, several models of leptokurtic distribution were chosen: 

Student t, NIG, hyperbolic and stable. For both tails NIG distribution is the closest one to the 

empirical data. Based on Dorich results the Student t and NIG distributions are acceptable for 

all considered α - values. Although static models cannot reproduce volatility clustering, they 

may be successful in modelling tails of distribution and computing VaR of the Belgrade Stock 

Exchange index BELEX15. 

Such studies are very useful for investors who are trying to compile portfolios of global 

assets with the requirement to be resilient in times of crisis. An interesting question is whether 

in such times of crisis, the market risk of the stock markets in the Balkans region differs 

significantly from that of the developed world's stock markets. 

METHODOLOGY 

The sense in which we use the “market risk” concept is that of a specifically selected 

measure of risk which is numerically measurable and for each of the examined stock markets 

(represented by their major stock indexes) we can collate a number that we call risk, determined 

for a portfolio of the respective stock market indexes.  

In this context, let us consider a discrete random time series X1, X2, X3…    … Xt … …, Xt+m 

which consists of closing prices of our sample indices and its logarithmic return at time t is: 
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 (1)  

Historically, the oldest numerically quantifiable measure of market risk, proposed by 

Markowitz (1952) in the context of his classic works for portfolio optimization, is the standard 

deviation (variance) of a random variable. The dispersion of a random variable is a measure of 

the distribution of a random variable, i.e. its deviation from the mathematical expectation. 

The Basel Committee on banking supervision at the Bank for International Settlements 

requires financial institutions to meet capital requirements on base VaR estimates, which has 

made the VaR methodology a fundamental market risk management tool employed by the 

financial institutions. According to Basel II framework, the preferred approach for market risk 

is value-at-risk (VaR). Banks will have the flexibility in devising the precise nature of their 

models, but the following minimum standards will apply for the purpose of calculating their 

capital charge: “Value-at-risk” must be computed on a daily basis, a 99th percentile, one-tailed 

confidence interval is to be used. An instantaneous price shock equivalent to a 10 day movement 

in prices is to be used, the historical observation period is a minimum length of one year and 

the banks should update their data sets no less frequently than once every three months. In 

particular VaR is defined for a fixed confidence level α ∈ (0, 1) as the smallest number 𝒱, such 

that the probability that the loss L exceeds 𝒱 is not larger than (1-α). If a random variable X 

describes a random return, then VaR is defined as the negative value of the lower α-quantile of 

the distribution of returns. 
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where 𝛼 ∈ (0,1) and 𝐹  𝑋
−1(𝛼) is the inverse function of the distribution of the random 

variable X. 

Despite the wide variety of approaches to calculating VaR estimates, we could consider 

them in four main groups. They differ among themselves in the assumptions made regarding 

the statistical properties of the time series formed by the empirical data and also in the 
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approaches to construct a distribution function  𝐹𝑋(𝛼). These groups are: the non-parametric 

historical approach, parametric approaches which could be analytical or could be based on a 

model, Monte Carlo stochastic simulations and stress tests based on scenarios. In this study the 

author has confined himself to the first three approaches and the markets under survey are not 

analyzed through stress tests.  

THE NON-PARAMETRIC HISTORICAL APPROACH (HISTORICAL SIMULATION) 

The simplest from computational viewpoint is the non-parametric historical approach that 

does not assume any specific distribution of the returns of the financial assets which we consider 

and the VaR forecasts are determined based only on the historical returns. When the historical 

simulation (HS) approach is applied the distribution of the logarithmic returns Rt is estimated 

within the settings of the distribution of the empirical historical data Xt−n+1,...,Xt. Thus, the 

method does not rely on any parameterized assumptions about the distribution of the returns. 

However this does not mean that stationarity is not implied for the discrete stochastic series of 

the empirical historical data Xt−n+1,...,Xt, which is a necessary condition to ensure convergence 

of the distribution of the empirical returns and of the distribution of the real returns. When we 

apply this approach we order the possible realizations of the logarithmic returns R1<R2< R3   … 

… … <Rn as an increasing statistical series and we set an appropriate level of confidence α. The 

value of the quantile corresponding to the chosen level of confidence is actually the VaR of the 

asset. For example, in a simulation for a period of 1000 work days, if we want to calculate the 

VaR at 99% confidence level, the VaR value is simply the 10-th lowest returns value. 

PARAMETRIC APPROACHES  

The simplest of the computational point of view and at the same time the most widespread 

parametric approach is that of constructing a distribution function 𝐹𝑋(𝛼) with the assumption 

for normal distribution of the returns. Then the VaR forecasts are completely determined by 

two parameters - the mathematical expectation μ and the standard deviation σ. Thus to construct 

the distribution function we are using the following formula: 

𝐹𝑋(𝛼) =  
1

√2𝜋𝜎
𝑒𝑥𝑝 {−

(𝛼 − 𝜇)2

2𝜎2
} 

(2)  
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(3)  

Despite its simplicity and wide spread, the assumption for a normal distribution is 

problematic, since the returns on most assets have distributions with strong skewness and 

kurtosis (fat tails). If we have such a distribution with fat tails, the VaR estimates obtained by 

this method will underestimate the maximum possible loss. This method uses the historical 

standard deviation, which makes it unsuitable in times of crisis and more generally in times of 

dynamic changes in the market conditions. 

One possible approach for modeling of empirical distributions with strong skewness and 

kurtosis (fat tails) is the one in which in order to construct a distribution function 𝐹𝑋(𝛼) we 

have to assume Student t distribution of the returns. Under this assumption we can construct a 

distribution function using the formula: 
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𝐹𝑋(𝛼) =  
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(4)  

ECONOMETRIC APPROACHES  

The presence of statistically significant conditional heteroscedasticity in the empirical 

data for the regulated capital markets we have reviewed allows us to use econometric ARMA-

GARCH approaches to construct the distribution function 𝐹𝑋(𝛼). To forecast 𝜀𝑡 we could use 

an asymmetric ARMA-GARCH model and the conditional dependency of the error in the 

moment t on the previous realizations
,..., 21  tt ee

. When we use an ARMA model for the 

deterministic part of Xt and denote the forecast for the variance 
)( 2

1 tt eЕ   with 
2

t
 then we get 

the following system of equations:  
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(6)  

and Sj= 1 if e 𝑡−𝑗 < 0, Sj = 0 if e 𝑡−𝑗 ≥ 0, and the following conditions hold: 

∑ Gi

P

i−1

+  ∑ Aj

Q

j−1

+
1

2
∑ Lj

Q

j−1

< 1, 𝐶2  ≥ 0, 𝐺𝑖  ≥ 0, 𝐴𝑖 ≥ 0, 𝐴𝑖 +  𝐿𝑗 ≥ 0 (7)  

where et  is the random disturbance or the error for a one-step ahead forecast, Xt-1, Xt-2, 

… are the past values of the time series, and et-1, et-2, … are previous realizations of the error. 

The first of the above equations is an ARMA (p, q) model, where 𝜙𝑖  stay for the 

autoregressive coefficients and Θ𝑗   stay for the coefficients of type “moving average”. 

The second equation models the behavior of the conditional variance and Aj are employed 

to denote the coefficients of the ARCH part while Gi - the additional coefficients that are 

introduced by Bollerslev - to represent the influence of the past forecasts mttt   ,...,, 21 . 

The distribution of the residuals is often found to be leptokurtic. As an “ad-hoc approach” 

the innovations can be modeled by a t-distribution where the degree-of-freedom parameter is 

estimated with maximum likelihood. This approach works quite well for return series with 

symmetric tails but fails when the tails are asymmetric. McNeil, A. and Frey, R (McNeil, A. 

and Frey, R., 2000) have proposed the generalized Pareto distribution (GPD) approximation 

which employs the extreme value theory to model the tail of the distribution of the innovations. 

The definition of the probability density function for the GPD with shape parameter 𝑘 ≠
0, scale parameter 𝜎, and threshold parameter 𝜃, is: 

𝑦 = 𝑓(𝑥 |𝑘, 𝜎, 𝜃) = (
1

𝜎
) (1 + 𝑘

(𝑥 − 𝜃)

𝜎
)

−1−
1

𝑘

 (8)  
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for 𝜃 < 𝑥, when 𝑘 > 0, or for 𝜃 < 𝑥 < −𝜎/𝑘, when 𝑘 < 0 

For 𝑘 = 0, the density is 

𝑦 = 𝑓(𝑥 |0, 𝜎, 𝜃) = (
1

𝜎
) 𝑒−

(𝑥−𝜃)

𝜎  for  𝜃 < 𝑥. 
(9)  

MONTE CARLO SIMULATION METHOD  

The Monte Carlo method simulates the behavior of risk factors and asset returns by 

generating random returns paths. Monte Carlo simulations provide possible index values on a 

given date t+n after the present time t; n>0. The VaR value can be determined from the 

distribution of simulated index values. The Monte Carlo approach is performed according to 

the following Algorithm 1:  

 

1. Specify an asymmetric stochastic AR (1)/GJR (1, 1) process that models well the 

dynamics of the capital markets under investigation. Additionally, the standardized 

residuals of each index are modeled as a standardized Student's t distribution to 

compensate for the fat tails that are often associated with equity returns. 

2. Having filtered the model residuals from each return series, standardize the residuals by 

the corresponding conditional standard deviation. These standardized residuals 

represent the underlying zero-mean, unit-variance, i.i.d. series upon which the Extreme 

Value Theory (EVT) estimation of the tails and sample cumulative distribution function 

(CDF) of each asset using a generalized Pareto distribution (GPD) estimate for the upper 

and lower tails. 

3. Then, by extrapolating into the generalized Pareto tails and interpolating into the 

smoothed interior, transform the uniform random variables to standardized residuals via 

the inversion of the semi-parametric CDF of each index. This produces simulated 

standardized residuals consistent with those obtained from the AR (1) / GJR (1, 1) 

filtering process above.  

4. 1000 independent random trials of dependent standardized index residuals over a one 

trading day horizon are simulated. 

5. Using the simulated standardized residuals as the i.i.d. input noise process, reintroduce 

the autocorrelation and heteroscedasticity observed in the original index returns. 

6. Having simulated the returns of each index, compute the VaR at 1% confidence level, 

over the one trading day risk horizon. 

7. Repeat steps 1 to 6 many times to form the distribution of the VaR over the 1569 trading 

days horizon with 1024 trading days window. 
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VAR UNDER LONG MEMORY IN RETURNS  

The presence of a short-term dependency in a given data set could be modeled very well 

by the classical ARIMA processes however the covariance between the observations Xi and 

Xi+h decreases fast with the increase of h. More precisely – the autocorrelation function of the 

process𝜌(𝑘) is geometrically restricted: 

  ,,2,1,  kCrk k  where C>0 and 0<r <1. (10)  

A class of models where the covariance between distant observations decreases like a 

power function, are suggested simultaneously by (Hosking, 1981) and (Granger,C.W.; 

Joyeux,R., 1980). A main feature of these models is the usage of fractional differentiation. The 

operator for fractional differentiation is formally defined by the following binomial 

decomposition:  
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(11)  

where B is the lag operator 
1 ii xBx , and d takes fractional values. To calculate the 

binomial coefficients it is technically more convenient to use the Gama function Г(.): 
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(13)  

The ARIMA (0, d, 0) process could be defined when the operator for fractional 

differentiation is used (in the case of Gaussian innovations): ,tt

d ZX   

where Zt is a process of discrete white noise – for simplicity it is taken to have one as a 

dispersion and d takes values in the  (-0.5,0.5) interval. 

The main features of one ARIMA (0, d, 0) process could be listed without a detailed 

exposition as follows: 

- when d<0.5 {Xt} is a stationary process with infinite moving average representation: 

t

d
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- when d>-0.5 {Xt} is an invertible process and has the following infinite autoregression 

representation: 





0

,
j

jtjtt

d XZX  where the coefficients j  are defined in (8) 
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j  

- when -0.5<d<0.5 the spectral density of {Xt} is    

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s , and in 

case of   we have that   ds 2 . 

- when -0.5<d<0.5 the autocovariance function, autocorrelation function and the partial 

autocorrelation function are: 
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(16)  

The listed features reveal that when -0.5<d<0.5 the ARIMA (0, d, 0) process is stationary 

and invertible, with coefficients jj  ,
 that decrease like a power function with the increase of 

j. We should note the difference from the exponential decrease in the case of a standard ARIMA 

(p, 0, q) process. When d>0 there is a long-term dependency, as could be seen from the formulas 

for  s  if 0  and  h if h  . 

A significantly broader class of ARIMA (p, d, q) processes with fractional d could be 

defined on the basis of the results received for ARIMA (0, d, 0). 

The process {Xt} is a fractional ARIMA (p, d, q) process with -0.5<d<0.5 if it is stationary 

and satisfies a difference equation of the form: 

    tt
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(18)  

B is the lag operator, and Zt is a discrete white noise. 

If the polynomials    BB  ,  do not have common roots then in case of   0 z  when 

1z  a single stationary solution of (12) exists and it is given by: 

jt
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jt ZX 
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    (19)  
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RESCALED-RANGE ANALYSIS (HURST METHOD) 

The method of rescaled-range is the oldest approach for assessment of the Hurst’s 

exponent in case of self-similar processes and it should be noted for its very good numerical 

features. (H.E.Hurst, 1951), (R.Weron, 2002) 

Let us define the statistic 
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(21)  

   


t

j tXtY
1

are partial sums of the process {Xt}, and  nS 2  is the empirical dispersion. 

In the work (Avram, 1986) is proven that the asymptotical behavior of the nSR /  statistics 

is like 2/1dn when n . This result allows for direct assessment of d by a linear regression 

of the logarithms of R / Sn and n.  

WHITTLE METHOD  

Let us take a look at a fractional ARIMA (p, d, q) process tX , defined by the equation  

    t

d

n ZBXB 
 , (22)  

where the innovations
tZ  are  i.i.d. random variables with a zero mathematical 

expectation. The task is to assess (p+q+1)-dimensional array of parameters

 dqp ,,,,,,,, 2121   , where p ,,1   and q ,,1   are coefficients respectively of 

the polynomials    BB  ,  that respect the conditions for the existence and invertibility of 

FARIMA (p, d, q) process, and the coefficient for fractional differentiation d is supposed to be 

in the interval  /11,0  .  

We introduce normalized periodogram  
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(23)  

and a power transfer function  that depends on the vector  : 
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



,
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,
,

2
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(24)  
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The assessment ̂  of the parameter vector   is found by finding the minimum of the 

function  

 
 

 











d
g

In
n 




,

~
2

 (25)  

where the integral is replaced by a sum on  Furier’ frequencies   ,/2  njj : 

 
 

j j

jn

n
g

I

n 




,

~
2

ˆ 2

 
(26)  

WAVELETS METHOD  

The wavelet transform appears to be a main tool for studying the scaling properties of a 

self-similar process ( Veitch, D.; Abry, P., Apr 1999). In the current paper the author has applied 

an estimator proposed by Flandrin (Flandrin, 1992), which estimates Hurst parameter H using 

the slope of the log-log plot of the detail variance versus the level. A more recent extension can 

be found in Abry et al. (Abry, P.; P. Flandrin, M.S. Taqqu, D. Veitch , 2003) 

 

MONTE CARLO SIMULATIONS UNDER LONG MEMORY IN RETURNS  

The Monte Carlo approach is performed according to the following Algorithm 2:  

1. Specify asymmetric stochastic AR (1) / GJR (1, 1) process that models well the 

dynamics of the capital markets under investigation.  Additionally, the standardized 

residuals of each index are modeled as a standardized Student's t distribution to 

compensate for the fat tails often associated with equity returns. 

2. Having filtered the model residuals from each return series, standardize the residuals by 

the corresponding conditional standard deviation. These standardized residuals 

represent the underlying zero-mean, unit-variance, i.i.d. series upon which the Extreme 

Value Theory (EVT) estimation of the tails and sample cumulative distribution function 

(CDF) of each asset using a generalized Pareto distribution (GPD) estimate for the upper 

and lower tails. 

3. Then, by extrapolating into the generalized Pareto tails and interpolating into the 

smoothed interior, transform the uniform random variables to standardized residuals via 

the inversion of the semi-parametric CDF of each index. This produces simulated 

standardized residuals consistent with those obtained from the AR (1) / GJR (1, 1) 

filtering process above.  

4. 1000 independent random trials of dependent standardized index residuals over a one 

trading day horizon are simulated. After that long range dependence, estimated on time 

horizon used for ARMA/GJR estimation is introduced to the simulated residuals. 

5. Using the simulated standardized residuals as the i.i.d. input noise process, reintroduce 

the autocorrelation and heteroscedasticity observed in the original index returns. 
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6. Having simulated the returns of each index, compute the VaR at 1% confidence level 

over the one trading day risk horizon. 

7. Repeat steps 1 to 6 many times to form the distribution of the over the 1950 trading days 

horizon with 1024 trading days window. 

 

EVALUATION FRAMEWORK 

We have to analyze the models that we have employed to calculate the VaR forecasts in 

order to assess how much the forecasts reflect the actual market risk in the case of the capital 

markets of the Balkans. Thus we assess their statistical accuracy through a series of standard 

tests and in particular: the Kupiec's Test - likelihood ratio unconditional coverage and the 

Christoffersen's Test - likelihood ratio independence coverage and likelihood ratio conditional 

coverage. At this stage we accept as adequate only those models for VaR estimates of the risk 

for which each of the standard tests gives a positive assessment of adequacy. 

For this purpose we define the following error function: 

𝐹𝑡 =  (
 = 1    VaR𝑡 < 𝑅𝑡

   =  0    VaR𝑡  ≥  𝑅𝑡
) (27)  

 

KUPIEC'S TEST 

This test was proposed in 1995 and is the most renowned method to test the adequacy of 

the models used for VaR forecasting. It is also known as POF- test (proportion of failures), and 

it provides an assessment of whether the number of exceptions is consistent with (corresponding 

to) the confidence interval.  

In his publication (Kupiec, 1995) proves that the number of these exceptions 𝑺 = ∑ 𝑭𝒕+𝟏
Т
𝟏  

is with binomial distribution B (Т, α ), where T is the number of observations. Thus we can 

appoint a model for VaR(α) forecasts of the risk as adequate if it has an empirical evaluation 

𝜶̂ = ∑ 𝑭𝒕+𝟏
𝑻
𝟏 /Т ∗ 𝟏𝟎𝟎[%], which is equal to the value α that is set during the definition of the 

VaR(α) model. The null hypothesis that we test is defined as H0: α = 𝜶̂ =  
𝑺

𝑻
 against the 

alternative H1 :α = 𝜶̂ ≠  
𝑺

𝑻
  with a test statistic: 

𝐿𝑅𝑃𝑂𝐹 = 2 [log ((
𝑆

𝑇
)

𝑠

(1 −
𝑆

𝑇
)

𝑇−𝑆

) −  log (𝛼𝑆(1 − 𝛼)𝑇−𝑆)] (28)  

LRPOF is with χ² distribution with one degree of freedom. 

If the value of the LRPOF - statistics exceeds the critical value of the χ ² distribution, the 

null hypothesis cannot be accepted and the model will be evaluated as incorrect. For the 

BACKTESTING process is used 95% of the χ ² distribution as a critical value for all tests of 

credibility.  

The Kupiec test can accept the models for forecasting VaR values where the number of 

exceptions is consistent (corresponds to) the confidence interval, but at the same time they 

produce clustered underestimated forecasts. Then in the periods that follow the undervalued 

VaR estimate, the probability to have once more underestimated VaR estimate greatly exceeds 
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the confidence interval, and from this perspective the model for forecasting of VaR estimates 

does not accurately reflect the actual market risk. This problem is discussed by (Christoffersen, 

1998) in his paper from 1998. 

CHRISTOFFERSEN'S TEST 

Christoffersen (Christoffersen, 1998) uses the same log likelihood testing framework as 

Kupiec, but extends the test to include also a separate statistic for independence of exceptions. 

The likelihood ratio test statistic is: 

LRCC= LRPOF + LRind

𝑑
−→

𝑇 → ∞
χ² (2) (29)  

LRCC is with χ² distribution with two degrees of freedom. 

If the value of the LRCC-statistics exceeds the critical value of the χ ² distribution with 

two degrees of freedom, the null hypothesis cannot be accepted and the model will be assessed 

as incorrect. For the BACKTESTING process is used 95% of the χ ² distribution with two 

degrees of freedom as a critical value for all tests of credibility. 

 

DATA DESCRIPTION 

All analysis undertaken in this paper is based on four Balkans stock markets (Turkey, 

Croatia, Romania and Bulgaria) in the period Q12002 - Q12014. The results that were obtained 

concern the indices that were surveyed - BEТ, CROBEX, ISE100 and SOFIX, measured as the 

daily logarithmic stock returns. 

 

EMPIRICAL RESULTS 

In this section, we analyze the accuracy of the VaR estimated maximum probable loss 

earned on the next trading day obtained with HS, Normal distribution, Student t distribution, 

Monte Carlo simulations (Algorithm 1) and also with the Monte Carlo simulations under long 

memory in returns (Algorithm 2). Table 1 shows the results. 

 

Table 1. Accuracy of the VaR estimated maximum probable loss earned on the next trading day 

BET 

Method failure rate  Uncond. Test Ho Cond. Test Ho 

HS 1,12% 0,270893309 accept 10,49469247 reject 

Normal distribution 1,93% 13,5773632 reject 29,82304788 reject 

Student t distribution 1,22% 0,904134997 accept 10,09184226 reject 

Monte Carlo (Algorithm 2) (R/S) 1,07% 0,09024833 accept 0,09024833 accept 

Monte Carlo (Algorithm 2) 

(Whittle Method) 
1,12% 0,270893309 accept 0,270893309 accept 

Monte Carlo (Algorithm 2) 

(Wavelets Method) 
1,02% 0,00590575 accept 0,00590575 accept 

Monte Carlo (Algorithm 1) 1,12% 0,270893309 accept 1,618974287 accept 
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CROBEX 

method failure rate Uncond. Test Ho Cond. Test Ho 

HS 1,42% 3,158417912 accept 20,87731986 reject 

Normal distribution 2,59% 35,05779863 reject 66,38154397 reject 

Student t distribution 1,58% 5,621066727 reject 26,82232735 reject 

Monte Carlo (Algorithm 2) (R/S) 1,02% 0,00590575 accept 0,00590575 accept 

Monte Carlo (Algorithm 2) 

(Whittle Method) 
1,02% 0,00590575 accept 0,00590575 accept 

Monte Carlo (Algorithm 2) 

(Wavelets Method) 
0,92% 0,145698538 accept 0,145698538 accept 

Monte Carlo (Algorithm 1) 1,48% 3,910055681 reject 4,486576192 accept 

ISE 100 

method failure rate  Uncond. Test Ho Cond. Test Ho 

HS 1,27% 1,349149808 accept 10,05885938 reject 

Normal distribution 2,39% 27,63263235 reject 35,4870631 reject 

Student t distribution 1,68% 7,594455981 reject 13,21743452 reject 

Monte Carlo (Algorithm 2) (R/S) 1,07% 0,09024833 accept 1,586461396 accept 

Monte Carlo (Algorithm 2) 

(Whittle Method) 
1,12% 0,270893309 accept 1,618974287 accept 

Monte Carlo (Algorithm 2) 

(Wavelets Method) 
1,17% 0,543507515 accept 5,375646733 accept 

Monte Carlo (Algorithm 1) 1,37% 2,479255898 accept 6,165012091 reject 

SOFIX 

method failure rate  Uncond. Test Ho Cond. Test Ho 

HS 1,27% 1,349149808 accept 21,44664856 reject 

Normal distribution 2,49% 31,26147356 reject 69,87192193 reject 

Student t distribution 1,42% 3,158417912 accept 26,94474592 reject 

Monte Carlo (Algorithm 2) (R/S) 0,61% 3,501800005 accept 3,501800005 accept 

Monte Carlo (Algorithm 2) 

(Whittle Method) 
0,86% 0,380959479 accept 0,380959479 accept 

Monte Carlo (Algorithm 2) 

(Wavelets Method) 
0,66% 2,588207597 accept 2,588207597 accept 

Monte Carlo (Algorithm 1) 1,17% 0,543507515 accept 0,543507515 accept 

CONCLUSIONS 

This paper presents an empirical analysis of the value-at-risk in the financial environment 

of the regulated financial markets on the Balkans (Turkey, Croatia, Romania and Bulgaria).The 

results obtained for the considered stock exchange indices BET, CROBEX, ISE100 and SOFIX 

indicate presence of long-term dependencies in the logarithmic returns and variance, and 

respectively the returns are featured by the so called "fat tails" and the assumption of a normal 

distribution of returns is inappropriate. 
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At all indices under survey the VaR(1%) estimates which were calculated for the period 

Q12002-Q12014 through historical simulation and under the assumption of normal and Student 

t distribution of the returns underestimate the actual market risk and respectively the results we 

have received evaluate the models as inaccurate. When estimating a Monte Carlo simulation 

which includes a model of the conditional heteroscedasticity without any long-term dependency 

the tests for adequacy of the model do not give unambiguous results. The models of conditional 

heteroscedasticity proposed by the authors consider the long-term dependency computed in 

three different classical methods (Rescaled-Range Analysis (Hurst Method), Whittle Method 

and Wavelets Method). They pass successfully through the test of adequacy and generally 

provide more accurate VaR(1%) forecasts. 

For the purposes of this analysis the following statistical tests are used: Kupiec’s test- 

likelihood ratio unconditional coverage test and Christoffersen’s test - likelihood ratio 

independence coverage and likelihood ratio conditional coverage test. 
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