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Сажетак: Разматрана је једна врста случајних шетњи-NAWs (од енглеског Neighbor-Avoiding 

Walks) на фракталној, 3-симплекс решетци. NAWs су само-непресјецајуће  шетње које не посјећују 

чворове решетке  који су најближи сусједи претходно посјећеног чвора (контакти).  Користе  се као 

једноставни модели полимерних конформација у изузетно добром растварачу (за који се обично каже да 

је    супер-савршени растварач).   Добијен је егзактан израз за  константу  повезаности на 3-симплекс 

решетци, која  у термодинамичком лимесу одређује ентропију полимера моделованог са NAWs. Тај израз 

је такође    нумерички потврђен. Искључење најближих сусједа довело је    до смањења константе 

повезаности и стога ентропије, у поређењу са обичним само-непресјецајућим шетњама.  

Abstract: We   consider Neighbor-avoiding walks  (NAWs)  on the  fractal, 3-simplex  lattice.  NAWs 

are  self-avoiding random  walks  that never visit any  site of the  lattice that is a nearest neighbor of  the  

previously visited site (contact). They  are simple models of polymer conformations in an extraordinary  good 

solvent (usually referred to  as super-perfect solvent). A closed form expression for the    connectivity constant  

of NAWs on the  3-simplex lattice,  which determines the entropy of a polymer in the thermodynamic limit,  is 

obtained and confirmed numerically. The  exclusion of the nearest neighbors has led  to a reduced value  of   the 

connectivity constant and thus the entropy,  in comparison  with ordinary self-avoiding walks, as expected.  
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1. INTRODUCTION 

 

 A  linear polymer,  with the  simplest  architecture among all polymers, consists of   many repeating  

units  (monomers)  arranged in   a straight line that forms the polymer backbone. Monomers usually have  

small side groups.  The main features of the  linear polymer, such as the  chain-like structure and   the  excluded 

volume of the monomers,     are well described by   Self-avoiding walks (SAWs). SAWs are  random walks 

that never visit the same lattice site more than once.   Each SAW represents  one possible conformation of the  

polymer dissolved in a good solvent when  monomers effectively repel each other.  Visited lattice sites  (or 

sometimes  steps of the walk) represent   monomers, whereas sites not visited by the walk  represent molecules 

of a  solvent.  In a very dilute solution one can study properties of just one   isolated chain.  Experimental 

techniques, such as light scattering  and  hydrodynamic viscosity  measurements,  give information about  the 

universal critical exponent 𝜈 that determines the gyration radius as a measure of the  ‘size’ of the space 
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occupied by the polymer [1]. It is assumed that the  gyration radius 𝑅𝑔  of a polymer scales with the number 

of monomers  𝑁 according to the power law 𝑅𝑔~𝑐𝑜𝑛𝑠𝑡𝑁𝜈. Exact enumerations of  SAWs and Monte Carlo 

simulations in three dimensional space   give 𝜈 ≈ 0.588   [2] ,  which is in a  good  agreement with the value 

extracted from  experiments 𝜈𝑒𝑥𝑝 ≈ 0.58 − 0.60 [3] as well as  Flory’s mean –field value 𝜈𝐹 =
3

5
= 0.6  [4].  

If the solvent is  extraordinary good  (“super-perfect”),  monomers strongly prefer to be surrounded  by  

the solvent molecules, i.e. they effectively strongly repel each other. In that case  Self-avoiding walk is not 

allowed to  visit any lattice site that is a nearest-neighbor of the sites visited previously  [5-8].  Non-

consecutively visited nearest-neighbor sites  are called contacts, so that SAWs that represent a polymer in an  

exquisitely good solvent  are not only self-avoiding  but  also  nearest-neighbor (contact) avoiding.  This subset 

of SAWs is known as   Neighbor-avoiding walks (NAWs) [5-8] . NAWs are also used to represent polymer in  

an ordinary good solvent if the polymer has bulky side groups so that excluded volume is enhanced [5,6].  

Exact enumeration of  NAWs is similar to those of  SAWs, with   an  additional restriction that the walks 

are  forbidden to visit contacts. It is assumed that  the number of  N-step NAWs   𝑍𝑁, grows  with the number 

of steps  (or visited sites)  𝑁, as  

 𝑍𝑁~𝑐𝑜𝑛𝑠𝑡 𝜔𝑁𝑁𝑎−1,                      (1) 

where 𝜔  is the connectivity constant, whereas 𝑎  is the  critical exponent.   The assumed expression for  𝑍𝑁 

can be confirmed by studying the generating function 

 𝐺(𝑥) = ∑ 𝑍𝑁𝑥𝑁∞
𝑁=0 ,                                                                                                                                (2) 

where 𝑥 is the weight of  each step in  the walk.    From (1) and (2) it can be shown  that  𝐺(𝑥)  has the  leading  

singularity of the form (1 − 𝑥𝜔)−𝑎, as 𝑥 → 𝑥𝑐 = 1/𝜔 from below.  Thus, 𝜔 can be determined from  the 

convergence  radius 𝑥𝑐  of the generating function, while the exponent 𝑎  emanates  from the asymptotic  

singularity form.  

The entropy  of the polymer  is given by  𝑆 = 𝑘𝐵 ln 𝑍𝑁, and from (1) it follows that  the entropy per 

monomer in the thermodynamic limit   𝜎 = lim
𝑁→∞

𝑆

𝑁
  is  𝜎 = 𝑘𝐵 ln 𝜔 . We see that the connectivity constant is a 

measure of  the polymer entropy.  This quantity is lattice dependent, i.e.   nonuniversal,  which implies  that  it 

varies with the  polymer-solvent system.  

 In the present paper, we determine 𝜔  on the 3-simplex,  deterministic fractal lattice.  In contrast to 

regular lattices which possess translational invariance and represent homogeneous solvents, fractal lattices  do 

not have this  symmetry  and are often used to simulate  some inhomogeneous environments.  On fractal lattices 

it is possible to enumerate walks recursively, and  here, by utilizing this method,   we obtain a closed form 

expression for 𝜔 in a similar manner as  𝜔𝑆𝐴𝑊     for ordinary Self-avoiding walks is  found on the same lattice 

[9].  

In Section 2 we   present  the recursive enumeration method  and  obtained result, while the  summary 

and conclusions are given in Section 3. 

 

2. RECCURSIVE ENUMERATION OF NAWs ON THE 3-SIMPLEX  

 

The 3-simplex lattice is  constructed  in iterative steps.  The  procedure starts with a unit triangle, also 

called the first order generator 𝐺(1).  In the  first step, three copies of   𝐺(1) are arranged into a triangular 

structure (the second order generator 𝐺(2)) in such a way that the vertices of the  composing  triangles are  



 
 

Figure 1. A neighbor-avoiding walk that consists of   N=12  steps (on the left). It contributes  to the coefficient 

of the  term with   𝑥12   in the generating function (7).  The right hand-side of the figure  represents  the same walk in 

the coarse-grained scheme.  

 

 

Figure 2.  Four possible types of walks,  denoted as A, B, C and D, are schematically shown on a generator of 

an arbitrary order r. Also, the  initial conditions for the walks A and B are shown, while for walks C and D they are 

zero.    

 

infinitesimally spaced. After 𝑟 − 1   repeated steps one gets the 𝑟-𝑡ℎ  order generator 𝐺(𝑟).  The third order 

generator, which consists of three  𝐺(2) (and  nine  𝐺(1)),  is  shown in Figure1.  The fractal lattice is obtained 

in the limit when 𝑟 → ∞. Each  𝐺(𝑟) consists of three 𝐺(𝑟−1)  and has twice larger side than each  𝐺(𝑟−1),   so 

that  the fractal dimension of the 3-simplex lattice is 𝑑𝑓 =
ln 3

ln 2
 . 

In Figure 1  one NAW on  𝐺(3) is presented in the left-hand  side,  while the coarse-grained, schematic 

representation of that walk is  shown on the right hand side  of the figure.  In the coarse-grained scheme, the  

internal structure of the generators  𝐺(2) is not shown, whereas  the parts of the walk through  each 𝐺(2)  are 

represented as   ‘steps’  denoted as 𝐴, 𝐴 and 𝐵.  There  𝐴 represents the  part of the walk that  starts (ends) in 

any lattice point of 𝐺(2) and leaves it through one corner vertex, while 𝐵 represents part of the walk that 

traverses  𝐺(2)  through  the two corner vertices. Two more configurations are possible, and all four are 

presented schematically in Figure 2.   Each step of the walk in  Figure 1  is weighted with the Boltzmann factor 

𝑥, which in recursive enumeration is accomplished by  assigning a factor √𝑥  to each site that is a starting or 

ending point of the walk, and a factor 𝑥 to each site through  which the walk passes by.    Initial  weighted 

walks   (walks on the  unit triangle) are shown in Figure 2  for configurations 𝐴 and 𝐵, while  configurations 

of  the type  𝐶   and 𝐷 are not  possible on the unit triangle. Denoting   the total weight  (restricted generating 

function)  of the  configuration  with the same label as the corresponding configuration, the  recurrence 

equations are 

  



 

 

Figure 3. Left:Neighbor-avoiding polygon that consists of   N=16  steps, contributing  to the  term with  𝑥16   

in the generating function (8). Right:Coarse-grained, schematic representation of the same  polygon.  

 

𝐴′ = 𝐴 + 2𝐴𝐵 + 2𝐴𝐵2 + 2𝐵2𝐶,                                                                                                                       (3) 

 𝐵′ = 𝐵2 + 𝐵3,                                                                                                                                                  (4) 

𝐶′ = 𝐴𝐵2 + 3𝐵2𝐶,                                                                                                                                            (5) 

𝐷′ = 𝐴2 + 2𝐴2𝐵 + 4𝐴𝐵𝐶 + 6𝐵𝐶2 + 2𝐵𝐷 + 3𝐵2𝐷.                                                                                       (6) 

These equations express weights of the walks 𝐴,𝐵, 𝐶 and 𝐷 on  𝐺(𝑟+1)  (on the left hand side) through their 

weights  on 𝐺(𝑟) (on the right hand side). Starting values, the weights of the walks on the unit triangle depicted 

in Figure 2,  are 𝐴(1) = √𝑥 + 2𝑥
3

2, 𝐵(1) = 𝑥2, 𝐶(1) = 0 and 𝐷(1) = 0.   Recurrence equations (3)-(6)  for 

NAWs are the same as  the   recurrence equations for SAWs [9],  but   the initial conditions differ.  NAWs do 

not alow for  the  configurations where all three sites of the unit triangle are  visited. They can visit at most 

two (if visited consecutively)  out of three sites of each unit triangle, as can be seen  in Figure 1 and Figure 2.   

One can notice that   Equation (4) decouple from other equations, and actually the weights of the walks 

𝐵  are  the only weights that are necessary for the construction of  the generating function for Neighbor-

avoiding polygons  (NAPs). One such polygon and its coarse grained version are  shown in Figure 3. The 

generating function for  NAWs  can be written as 

𝐺𝑊(𝑥) = 𝑥 + ∑
1

3𝑟+1
[3𝐴𝑟(𝑥)2 + 3𝐵𝑟(𝑥)𝐴𝑟(𝑥)2 + 3𝐵𝑟(𝑥)2𝐷𝑟(𝑥)]∞

𝑟=1 ,                                                          (7) 

while  the generating function for polygons is simpler, it consists only of 𝐵 configurations 

𝐺𝑃(𝑥) = ∑
1

3𝑟+1
∞
𝑟=1 (𝐵𝑟(𝑥))3.                                                                                                                             (8) 

 By the iteration of the generating functions (7) and (8),  together with  Equations (3-6) and their  initial 

conditions, one can numerically find the radius of convergence of the generating functions. In that way, we 

find that for each 𝑥 < 0.78615 … both generating functions converge, while for  𝑥 > 0.78615 … they both 

diverge. We then conclude that 𝑥𝑐 = 0.78615 … so that =
1

𝑥𝑐
= 1.2720 … , the same for Neighbor-avoiding  

walks and Neighbor-avoiding polygons.  

 

However,  since Equation (2) is independent of other equations and its fixed points can be found 

exactly,  one can find closed form solution for the connectivity constant.  Fixed point equation is  

 

𝐵∗ = (𝐵∗)2 + (𝐵∗)3,                                                                                                                                          (9) 



and has nonnegative   trivial solutions 0  and ∞, and one nontrivial solution  𝐵∗ =
√5−1

2
 .  For each 𝐵 < 𝐵∗, 

variable 𝐵 iterates to zero, while for each 𝐵 > 𝐵∗ it diverges. For  𝐵 = 𝐵∗ it  does not  change with  the  

iterations. Since  the generating  function for polygons depends only on 𝐵 , it follows immediately from 

Equation (8)  that  𝐺𝑃  stays finite for 𝐵 < 𝐵∗  and diverges for 𝐵 > 𝐵∗.    As the variable  𝐵 depends on 𝑥    

and iteration starts from   𝐵(1) = 𝑥2 , we see that (𝑥𝑐)2 =
√5−1

2
  and 𝑥𝑐 = (

√5−1

2
 )

1

2
.  Then 

 

 𝜔 = (
2

√5−1
)

1

2
= 1.272019649 ….                                                                                                                      (10) 

 

From the  recurrence equations  (3)-(6) and the  expression (7)  it follows that the same 𝜔 holds  for open walks 

too.   Namely, Equations (3) and (5) decouple from (6), and they are linear over variables 𝐴 and 𝐶 with the 

coefficients that depend on  𝐵. This implies that they have the same 𝜔 as the variable 𝐵, and linearity  leads to  

different  exponent  𝑎 in  the power law correction factor  (expression (1)) for open walks in comparison with 

the polygons.  

 

Connectivity constant can  also be found  from the Interacting self-avoiding walk model (ISAW, [10] 

and [11] for 𝑠 = 1 ) in the limit of infinitly repulsive contact energy when the interaction parameter tends to 

zero.  Here,   from the ISAW  model also,  we have obtained  numerically the value of 𝜔 in accordance with 

the closed-form expression. 

 

 

3. SUMMARY AND CONCLUSIONS   

 

We have considered Neighbor-avoiding walks and polygons as simple lattice models of  linear and  ring 

polymer   conformations  in  an exceptionally good solvent.  Walks are constrained on the 3-simplex fractal 

lattice where an   exact  recursive method  for the generating functions of all walks and polygons  of different 

lengths  has been  applied. The closed form expression   (10) for the connectivity constant 𝜔 of  Neighbor-

avoiding walks on this lattice,  is found.  The connectivity constant   characterizes   the leading order  

exponential  growth of the number of walks  with the number of steps.  This nonuniversal quantity  determines 

the free energy and  entropy of a polymer modeled by NAWs.  It is found   that the connectivity constant is  

the same for walks and polygons, which is also the case for ordinary Self-avoiding walks and polygons.  But, 

the  connectivity constant of Neighbor-avoiding walks and polygons (𝜔 = (
2

√5−1
)

1

2
= 1.2720 … ) is smaller 

than the connectivity constant  of ordinary Self-avoiding walks  and polygons (𝜔𝑆𝐴𝑊 =
2

√5−1
= 1.6180 … [9]) 

as could be expected,  since  Neighbor avoiding walks are the subset of  Self-avoiding walks.  This means that 

the entropy is smaller,  as a consequence of the reduced number of microstates. Furthermore,  as the recurrence 

equations for NAWs are the same as those  for ordinary SAWs, the  critical exponent 𝑎  of NAWs  in  the 

expression  (1)  is  the same as the  corresponding exponent of SAWs  (𝑎 = 𝛾 = 1.3752 … ) found in [9].  Also, 

the corresponding exponent for  NAPs  is the same as for  SAPs (𝑎 = 𝛼 − 2 = −1.2658 … 1[9]). Finally, the 

critical exponent 𝜈  (𝜈 = 0.7986 … ) is the same for both types of walks.  This  implies that NAWs  (NAPs) 

belong to the same universality class as SAWs (SAPs).  The same  conclusion  has already been confirmed on 

regular lattices. Although NAWs are well studied problem on regular lattices, we are not  aware of any such 

study on fractal ones, and  we think that  the future work should be conducted in order to see how lattice 

parameters:  the coordination number (the number of the nearest neighbor sites) and the minimal contact length 

[11,12] (the minimal number of  steps necessary  to reach the nearest neighbor site), affect the connectivity 

constant of NAWs.  

  

  

 

 
                                                                    
1 A negative value  of  the exponent 𝑎 indicates that the  polygon generating function stays   finite at 𝑥 = 𝑥𝑐 .  
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