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Caxerak: Pasmarpana je jeana Bpcra cnydajuux metwsu-NAWS (on enrneckor Neighbor-Avoiding
Walks) na ¢paxrannoj, 3-cummiekc pemerign. NAWS cy camo-Henpecjerajyhe mietme koje He mocjehyjy
YBOPOBE pelIeTKe KOoju Cy HajOnmku cycjenu mperxoiHo nocjeheHor uBopa (koHtaktn). Kopucrte ce kao
JEIHOCTaBHU MOJETH NOJMMEPHUX KOH(POpMaIHja y H3y3eTHO JOOpOM pacTBapady (3a KOju ce OOMYHO Kaxke Ja
je  cymep-caBpuieHH pactBapau). JloOuWjeH je ersakTaH M3pa3 32 KOHCTAaHTY MOBE3aHOCTH Ha 3-CHMILICKC
pelIeTr, Koja y TepMOJMHAMHUYKOM JuMecy oapelyje enTponujy nomumepa moaenoBanor ca NAWS. Taj uzpas
je Takohe  Hymepmuku moTBpheH. Vckipydeme HajOMImKNX cycjea AOBEJO je 10 CMameHkha KOHCTAHTE
ITOBE3aHOCTH ¥ CTOTa EHTPOIHje, Y mopehemy ca 0OMIHIM caMmo-HerpecjenajyhuM meTmama.

Abstract: We consider Neighbor-avoiding walks (NAWSs) on the fractal, 3-simplex lattice. NAWSs
are self-avoiding random walks that never visit any site of the lattice that is a nearest neighbor of the
previously visited site (contact). They are simple models of polymer conformations in an extraordinary good
solvent (usually referred to as super-perfect solvent). A closed form expression for the  connectivity constant
of NAWSs on the 3-simplex lattice, which determines the entropy of a polymer in the thermodynamic limit, is
obtained and confirmed numerically. The exclusion of the nearest neighbors has led to a reduced value of the
connectivity constant and thus the entropy, in comparison with ordinary self-avoiding walks, as expected.
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1. INTRODUCTION

A linear polymer, with the simplest architecture among all polymers, consists of many repeating
units (monomers) arranged in a straight line that forms the polymer backbone. Monomers usually have
small side groups. The main features of the linear polymer, such as the chain-like structure and the excluded
volume of the monomers,  are well described by Self-avoiding walks (SAWSs). SAWs are random walks
that never visit the same lattice site more than once. Each SAW represents one possible conformation of the
polymer dissolved in a good solvent when monomers effectively repel each other. Visited lattice sites (or
sometimes steps of the walk) represent monomers, whereas sites not visited by the walk represent molecules
of a solvent. In a very dilute solution one can study properties of just one isolated chain. Experimental
techniques, such as light scattering and hydrodynamic viscosity measurements, give information about the
universal critical exponent v that determines the gyration radius as a measure of the ‘size’ of the space
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occupied by the polymer [1]. It is assumed that the gyration radius R, of a polymer scales with the number
of monomers N according to the power law R,;~constN". Exact enumerations of SAWs and Monte Carlo
simulations in three dimensional space give v =~ 0.588 [2], whichisina good agreement with the value

extracted from experiments v,,,, ~ 0.58 — 0.60 [3] as well as Flory’s mean —field value vy = g = 0.6 [4].

If the solvent is extraordinary good (“super-perfect”), monomers strongly prefer to be surrounded by
the solvent molecules, i.e. they effectively strongly repel each other. In that case Self-avoiding walk is not
allowed to visit any lattice site that is a nearest-neighbor of the sites visited previously [5-8]. Non-
consecutively visited nearest-neighbor sites are called contacts, so that SAWSs that represent a polymer in an
exquisitely good solvent are not only self-avoiding but also nearest-neighbor (contact) avoiding. This subset
of SAWSs is known as Neighbor-avoiding walks (NAWS) [5-8] . NAWS are also used to represent polymer in
an ordinary good solvent if the polymer has bulky side groups so that excluded volume is enhanced [5,6].

Exact enumeration of NAWS is similar to those of SAWSs, with an additional restriction that the walks
are forbidden to visit contacts. It is assumed that the number of N-step NAWS Zy, grows with the number
of steps (or visited sites) N, as

Zy~const wVN% 1, (1)

where w is the connectivity constant, whereas a is the critical exponent. The assumed expression for Zy
can be confirmed by studying the generating function

G(x) = XN=0Zyx", )

where x is the weight of each step in the walk. From (1) and (2) it can be shown that G(x) hasthe leading
singularity of the form (1 — xw)™%, asx = x. = 1/w from below. Thus, w can be determined from the
convergence radius x. of the generating function, while the exponent a emanates from the asymptotic
singularity form.

The entropy of the polymer is given by S = kg InZ,, and from (1) it follows that the entropy per
monomer in the thermodynamic limit o = A}im % is 0 = kg In w . We see that the connectivity constant is a

measure of the polymer entropy. This quantity is lattice dependent, i.e. nonuniversal, which implies that it
varies with the polymer-solvent system.

In the present paper, we determine w on the 3-simplex, deterministic fractal lattice. In contrast to
regular lattices which possess translational invariance and represent homogeneous solvents, fractal lattices do
not have this symmetry and are often used to simulate some inhomogeneous environments. On fractal lattices
it is possible to enumerate walks recursively, and here, by utilizing this method, we obtain a closed form
expression for w in a similar manner as wg,y,,  for ordinary Self-avoiding walks is found on the same lattice

[9].

In Section 2 we present the recursive enumeration method and obtained result, while the summary
and conclusions are given in Section 3.

2. RECCURSIVE ENUMERATION OF NAWSs ON THE 3-SIMPLEX

The 3-simplex lattice is constructed in iterative steps. The procedure starts with a unit triangle, also
called the first order generator G, In the first step, three copies of G are arranged into a triangular
structure (the second order generator G ) in such a way that the vertices of the composing triangles are



Figure 1. A neighbor-avoiding walk that consists of N=12 steps (on the left). It contributes to the coefficient
of the termwith x'? in the generating function (7). The right hand-side of the figure represents the same walk in
the coarse-grained scheme.

Figure 2. Four possible types of walks, denoted as A, B, C and D, are schematically shown on a generator of
an arbitrary order r. Also, the initial conditions for the walks A and B are shown, while for walks C and D they are
Zero.

infinitesimally spaced. After r — 1 repeated steps one gets the r-th order generator G ™. The third order
generator, which consists of three G (and nine G(V), is shown in Figurel. The fractal lattice is obtained

in the limit when r — oo. Each G consists of three 6™ and has twice larger side than each ¢T~1, so

In3

that the fractal dimension of the 3-simplex lattice is dy = —-

In Figure 1 one NAW on G® is presented in the left-hand side, while the coarse-grained, schematic
representation of that walk is shown on the right hand side of the figure. In the coarse-grained scheme, the
internal structure of the generators G is not shown, whereas the parts of the walk through each G are
represented as ‘steps’ denoted as A, A and B. There A represents the part of the walk that starts (ends) in
any lattice point of G(® and leaves it through one corner vertex, while B represents part of the walk that
traverses G through the two corner vertices. Two more configurations are possible, and all four are
presented schematically in Figure 2. Each step of the walk in Figure 1 is weighted with the Boltzmann factor
x, which in recursive enumeration is accomplished by assigning a factor /x to each site that is a starting or
ending point of the walk, and a factor x to each site through which the walk passes by. Initial weighted
walks (walks on the unit triangle) are shown in Figure 2 for configurations A and B, while configurations
of thetype € and D are not possible on the unit triangle. Denoting the total weight (restricted generating
function) of the configuration with the same label as the corresponding configuration, the recurrence
equations are



Figure 3. Left:Neighbor-avoiding polygon that consists of N=16 steps, contributing to the term with x'¢
in the generating function (8). Right:Coarse-grained, schematic representation of the same polygon.

A" = A+ 2AB + 2AB? + 2B?C, (3)
B’ = B? + B3, 4)
C' = AB? + 3B?C, (5)
D' = A% + 2A%B + 4ABC + 6BC? + 2BD + 3B*D. (6)

These equations express weights of the walks 4,B, C and D on G™*1) (on the left hand side) through their
weights on G™ (on the right hand side). Starting values, the weights of the walks on the unit triangle depicted

3
in Figure 2, are A = +/x + 2xz, BW =x2, ¢ =0and DV = 0. Recurrence equations (3)-(6) for
NAWS are the same as the recurrence equations for SAWSs [9], but the initial conditions differ. NAWSs do
not alow for the configurations where all three sites of the unit triangle are visited. They can visit at most
two (if visited consecutively) out of three sites of each unit triangle, as can be seen in Figure 1 and Figure 2.

One can notice that Equation (4) decouple from other equations, and actually the weights of the walks
B are the only weights that are necessary for the construction of the generating function for Neighbor-
avoiding polygons (NAPs). One such polygon and its coarse grained version are shown in Figure 3. The
generating function for NAWSs can be written as

G (%) = x + B3y 577 [34,(0)2 + 3B, () Ar ()2 + 3B, (x) 2D, (x)], ©)
while the generating function for polygons is simpler, it consists only of B configurations

Gp(x) = X5 3 (Br (1)), ®

By the iteration of the generating functions (7) and (8), together with Equations (3-6) and their initial
conditions, one can numerically find the radius of convergence of the generating functions. In that way, we
find that for each x < 0.78615 ... both generating functions converge, while for x > 0.78615 ... they both
diverge. We then conclude that x. = 0.78615 ... so that = xl = 1.2720 ..., the same for Neighbor-avoiding

walks and Neighbor-avoiding polygons.

However, since Equation (2) is independent of other equations and its fixed points can be found
exactly, one can find closed form solution for the connectivity constant. Fixed point equation is

B* = (B*)? + (B*)3, ©)



and has nonnegative trivial solutions 0 and oo, and one nontrivial solution B* = % For each B < B,

variable B iterates to zero, while for each B > B* it diverges. For B = B* it does not change with the

iterations. Since the generating function for polygons depends only on B, it follows immediately from

Equation (8) that Gp stays finite for B < B* and diverges for B > B*.  As the variable B depends on x
1

and iteration starts from B™ = x?  we see that (x.)? = % and x, = (@ )2. Then
1
w = (V%)Z = 1.272019649 ... (10)

From the recurrence equations (3)-(6) and the expression (7) it follows that the same w holds for open walks
too. Namely, Equations (3) and (5) decouple from (6), and they are linear over variables A and C with the
coefficients that depend on B. This implies that they have the same w as the variable B, and linearity leads to
different exponent a in the power law correction factor (expression (1)) for open walks in comparison with
the polygons.

Connectivity constant can also be found from the Interacting self-avoiding walk model (ISAW, [10]
and [11] for s = 1) in the limit of infinitly repulsive contact energy when the interaction parameter tends to
zero. Here, from the ISAW model also, we have obtained numerically the value of w in accordance with
the closed-form expression.

3. SUMMARY AND CONCLUSIONS

We have considered Neighbor-avoiding walks and polygons as simple lattice models of linear and ring
polymer conformations in an exceptionally good solvent. Walks are constrained on the 3-simplex fractal
lattice where an exact recursive method for the generating functions of all walks and polygons of different
lengths has been applied. The closed form expression (10) for the connectivity constant w of Neighbor-
avoiding walks on this lattice, is found. The connectivity constant characterizes the leading order
exponential growth of the number of walks with the number of steps. This nonuniversal quantity determines
the free energy and entropy of a polymer modeled by NAWSs. It is found that the connectivity constant is
the same for walks and polygons, which is also the case for ordinary Self-avoiding walks and polygons. But,

1

the connectivity constant of Neighbor-avoiding walks and polygons (w = (ﬁ)i = 1.2720...) is smaller

than the connectivity constant of ordinary Self-avoiding walks and polygons (wsay = é = 1.6180...[9])

as could be expected, since Neighbor avoiding walks are the subset of Self-avoiding walks. This means that
the entropy is smaller, as a consequence of the reduced number of microstates. Furthermore, as the recurrence
equations for NAWSs are the same as those for ordinary SAWSs, the critical exponent a of NAWSs in the
expression (1) is the same as the corresponding exponent of SAWS (a =y = 1.3752...) found in [9]. Also,
the corresponding exponent for NAPs is the same as for SAPs (a = @ — 2 = —1.2658 ...1[9]). Finally, the
critical exponentv (v = 0.7986 ...) is the same for both types of walks. This implies that NAWSs (NAPs)
belong to the same universality class as SAWSs (SAPs). The same conclusion has already been confirmed on
regular lattices. Although NAWSs are well studied problem on regular lattices, we are not aware of any such
study on fractal ones, and we think that the future work should be conducted in order to see how lattice
parameters: the coordination number (the number of the nearest neighbor sites) and the minimal contact length
[11,12] (the minimal number of steps necessary to reach the nearest neighbor site), affect the connectivity
constant of NAWS.

1 A negative value of the exponent a indicates that the polygon generating function stays finite at x = x,.
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